Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Helicobacter pylori: gastric cancer and beyond

An Erratum to this article was published on 01 August 2010

Key Points

  • Infection with Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, but only a minority of colonized individuals develop cancer of the stomach.

  • H. pylori strains exhibit extensive genetic diversity and strain-specific proteins augment the risk for malignancy.

  • β-catenin signalling has an important role in conjunction with other oncogenic pathways in the regulation of host responses to H. pylori that have carcinogenic potential.

  • Transactivation of epidermal growth factor receptor may help us understand the epithelial signalling pathways that mediate H. pylori-induced carcinogenesis.

  • Chronic inflammation can induce aberrant β-catenin activation in the context of H. pylori infection.

  • A mechanistic understanding of H. pylori activation of oncogenic signalling may lead to key insights into malignancies that arise from inflammatory foci in other organ systems.

Abstract

Helicobacter pylori is the dominant species of the human gastric microbiome, and colonization causes a persistent inflammatory response. H. pylori-induced gastritis is the strongest singular risk factor for cancers of the stomach; however, only a small proportion of infected individuals develop malignancy. Carcinogenic risk is modified by strain-specific bacterial components, host responses and/or specific host–microbe interactions. Delineation of bacterial and host mediators that augment gastric cancer risk has profound ramifications for both physicians and biomedical researchers as such findings will not only focus the prevention approaches that target H. pylori-infected human populations at increased risk for stomach cancer but will also provide mechanistic insights into inflammatory carcinomas that develop beyond the gastric niche.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Helicobacter pylori VacA structure and functional effects.
Figure 2: Interactions between pathogenic H. pylori and gastric epithelial cells.
Figure 3: Aberrant activation of β-catenin by Helicobacter pylori.
Figure 4: Transactivation of EGFR by H. pylori and induced cellular consequences with carcinogenic potential.

Similar content being viewed by others

References

  1. Peek, R. M., Jr., & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Rev. Cancer 2, 28–37 (2002).

    Article  CAS  Google Scholar 

  2. Correa, P. Human gastric carcinogenesis: a multistep and multifactorial process-- First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 52, 6735–6740 (1992).

    CAS  PubMed  Google Scholar 

  3. Herrera, V. & Parsonnet, J. Helicobacter pylori and gastric adenocarcinoma. Clin. Microbiol Infect. 15, 971–976 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Wong, B. C. et al. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA 291, 187–194 (2004). One of the first large, randomized placebo-controlled trials to examine the effect of H. pylori eradication on the incidence of gastric cancer.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Y. & Blaser, M. J. Inverse associations of Helicobacter pylori with asthma and allergy. Arch. Intern. Med. 167, 821–827 (2007).

    Article  PubMed  Google Scholar 

  6. Dorer, M. S., Talarico, S. & Salama, N. R. Helicobacter pylori's unconventional role in health and disease. PLoS Pathog. 5, e1000544 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bik, E. M. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103, 732–737 (2006). A seminal study that used molecular techniques to define the gastric microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rhead, J. L. et al. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 133, 926–936 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Cover, T. L. & Blanke, S. R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nature Rev. Microbiol 3, 320–332 (2005).

    Article  CAS  Google Scholar 

  10. Fujikawa, A. et al. Mice deficient in protein tyrosine phosphatase receptor type Z. are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nature Genet. 33, 375–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Hennig, E. E., Godlewski, M. M., Butruk, E. & Ostrowski, J. Helicobacter pylori VacA cytotoxin interacts with fibronectin and alters HeLa cell adhesion and cytoskeletal organization in vitro. FEMS Immunol. Med. Microbiol 44, 143–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Seto, K., Hayashi-Kuwabara, Y., Yoneta, T., Suda, H. & Tamaki, H. Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by the EGF receptor in HeLa cells. FEBS Lett. 431, 347–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Molinari, M. et al. The acid activation of Helicobacter pylori toxin VacA: structural and membrane binding studies. Biochem. Biophys. Res. Commun. 248, 334–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Gupta, V. R. et al. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog. 4, e1000073 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sewald, X. et al. Integrin subunit CD18 is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin. Cell Host Microbe 3, 20–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Cover, T. L., Krishna, U. S., Israel, D. A. & Peek, R. M. Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res. 63, 951–957 (2003).

    CAS  PubMed  Google Scholar 

  17. Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102 (2003). This study demonstrated that a previously identified virulence factor could also suppress the immune response to H. pylori.

    Article  CAS  PubMed  Google Scholar 

  18. Sundrud, M. S., Torres, V. J., Unutmaz, D. & Cover, T. L. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc. Natl Acad. Sci. USA 101, 7727–7732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerhard, M. et al. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl Acad. Sci. USA 96, 12778–12783 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miehlke, S. et al. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int. J. Cancer 87, 322–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Louw, J. A. et al. The relationship between Helicobacter pylori infection, the virulence genotypes of the infecting strain and gastric cancer in the African setting. Helicobacter 6, 268–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Figueiredo, C. et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J. Natl Cancer Inst. 94, 1680–1687 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Van Doorn, L. J. et al. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology 116, 823–830 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Salama, N. R., Otto, G., Tompkins, L. & Falkow, S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 69, 730–736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wirth, H. P., Beins, M. H., Yang, M., Tham, K. T. & Blaser, M. J. Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect. Immun. 66, 4856–4866 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Algood, H. M., Torres, V. J., Unutmaz, D. & Cover, T. L. Resistance of primary murine CD4+ T cells to Helicobacter pylori vacuolating cytotoxin. Infect. Immun. 75, 334–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997). The first annotated description of the entire genome sequence from a single H. pylori strain. This study provided a framework for investigators to delve into H. pylori –host interactions and understand how these relationships affect carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  28. Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. Oh, J. D. et al. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc. Natl Acad. Sci. USA 103, 9999–10004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McClain, M. S., Shaffer, C. L., Israel, D. A., Peek, R. M. Jr., & Cover, T. L. Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer. BMC Genomics 10, 3 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Solnick, J. V., Hansen, L. M., Salama, N. R., Boonjakuakul, J. K. & Syvanen, M. Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc. Natl Acad. Sci. USA 101, 2106–2111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mahdavi, J. et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573–578 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monteiro, M. A. et al. Expression of histo-blood group antigens by lipopolysaccharides of Helicobacter pylori strains from Asian hosts: the propensity to express type 1 blood-group antigens. Glycobiology 10, 701–713 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Wirth, H. P. et al. Phenotypic diversity in Lewis expression of Helicobacter pylori isolates from the same host. J. Lab. Clin. Med. 133, 488–500 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Appelmelk, B. J. et al. Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes. Infect. Immun. 67, 5361–5366 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Linden, S., Boren, T., Dubois, A. & Carlstedt, I. Rhesus monkey gastric mucins: oligomeric structure, glycoforms and Helicobacter pylori binding. Biochem. J. 379, 765–775 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pohl, M. A. et al. Host-dependent Lewis (Le) antigen expression in Helicobacter pylori cells recovered from Leb-transgenic mice. J. Exp. Med. 206, 3061–3072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamaoka, Y. et al. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology 123, 414–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Yamaoka, Y., Kwon, D. H. & Graham, D. Y. A M(r) 34, 000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc. Natl Acad. Sci. USA 97, 7533–7538 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamaoka, Y. et al. Role of interferon-stimulated responsive element-like element in interleukin-8 promoter in Helicobacter pylori infection. Gastroenterology 126, 1030–1043 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, H. et al. Regulation of interleukin-6 promoter activation in gastric epithelial cells infected with Helicobacter pylori. Mol. Biol. Cell 16, 4954–4966 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kudo, T. et al. Regulation of RANTES promoter activation in gastric epithelial cells infected with Helicobacter pylori. Infect. Immun. 73, 7602–7612 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, J. Y. et al. Balance between polyoma enhancing activator 3 and activator protein 1 regulates Helicobacter pylori-stimulated matrix metalloproteinase 1 expression. Cancer Res. 66, 5111–5120 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ando, T. et al. Host cell responses to genotypically similar Helicobacter pylori isolates from United States and Japan. Clin. Diagn Lab. Immunol. 9, 167–175 (2002).

    PubMed  PubMed Central  Google Scholar 

  46. Odenbreit, S., Kavermann, H., Puls, J. & Haas, R. CagA tyrosine phosphorylation and interleukin-8 induction by Helicobacter pylori are independent from AlpAB, HopZ and Bab group outer membrane proteins. Int. J. Med. Microbiol 292, 257–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Akanuma, M. et al. The evaluation of putative virulence factors of Helicobacter pylori for gastroduodenal disease by use of a short-term Mongolian gerbil infection model. J. Infect. Dis. 185, 341–347 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Dossumbekova, A. et al. Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms. J. Infect. Dis. 194, 1346–1355 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Franco, A. T. et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 68, 379–387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000). One of the first studies to demonstrate that H. pylori has the capacity to translocate a bacterial protein into host cells.

    Article  CAS  PubMed  Google Scholar 

  51. Mimuro, H. et al. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe 2, 250–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Ohnishi, N. et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc. Natl Acad. Sci. USA 105, 1003–1008 (2008). A remarkable study demonstrating that transgenic expression of CagA in mice can lead to carcinoma, in the absence of co-existing gastritis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu, H., Hsu, P. I., Graham, D. Y. & Yamaoka, Y. Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology 128, 833–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Z. et al. The Helicobacter pylori duodenal ulcer promoting gene, dupA in China. BMC Gastroenterol. 8, 49 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Arachchi, H. S. et al. Prevalence of duodenal ulcer-promoting gene (dupA) of Helicobacter pylori in patients with duodenal ulcer in North Indian population. Helicobacter 12, 591–597 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt, H. M. et al. The prevalence of the duodenal ulcer promoting gene (dupA) in Helicobacter pylori isolates varies by ethnic group and is not universally associated with disease development: a case-control study. Gut Pathog. 1, 5 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nguyen, L. T. et al. Helicobacter pylori dupA gene is not associated with clinical outcomes in the Japanese population. Clin. Microbiol Infect. 14 October 2009 (doi: 10.1111/j.1469–06912009.03081.x).

  58. Gomes, L. I. et al. Lack of association between Helicobacter pylori infection with dupA-positive strains and gastroduodenal diseases in Brazilian patients. Int. J. Med. Microbiol. 298, 223–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Argent, R. H., Burette, A., Miendje Deyi, V. Y. & Atherton, J. C. The presence of dupA in Helicobacter pylori is not significantly associated with duodenal ulceration in Belgium, South Africa, China, or North America. Clin. Infect. Dis. 45, 1204–1206 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Douraghi, M. et al. dupA as a risk determinant in Helicobacter pylori infection. J. Med. Microbiol 57, 554–562 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Kwok, T. et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449, 862–866 (2007). This study identified the specific cag protein and its cognate host receptor that permits CagA translocation.

    Article  CAS  PubMed  Google Scholar 

  62. Jimenez-Soto, L. F. et al. Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog. 5, e1000684 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Necchi, V. et al. Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. Gastroenterology 132, 1009–1023 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Aspholm, M. et al. SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog. 2, e110 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F. & Backert, S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem. 277, 6775–6778 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Stein, M. et al. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol. 43, 971–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Tammer, I., Brandt, S., Hartig, R., Konig, W. & Backert, S. Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 132, 1309–1319 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Higashi, H. et al. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J. Biol. Chem. 279, 17205–17216 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Selbach, M. et al. The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J. 22, 515–528 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mimuro, H. et al. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol. Cell 10, 745–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Churin, Y. et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J. Cell Biol. 161, 249–255 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Murata-Kamiya, N. et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26, 4617–4626 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003). An insightful study demonstrating the ability of CagA to aberrantly disrupt apical-junctional complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Umeda, M. et al. Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J. Biol. Chem. 284, 22166–22172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu, H., Murata-Kamiya, N., Saito, Y. & Hatakeyama, M. Role of Partitioning-defective 1/Microtubule Affinity-regulating Kinases in the morphogenetic activity of Helicobacter pylori CagA. J. Biol. Chem. 284, 23024–23036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kurashima, Y. et al. Deregulation of beta-catenin signal by Helicobacter pylori CagA requires the CagA-multimerization sequence. Int. J. Cancer 122, 823–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Suzuki, M. et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 5, 23–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Ne Sbreve Ic, D. et al. Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nature Struct. Mol. Biol. 17, 130–132 (2010).

    Article  CAS  Google Scholar 

  81. Keates, S. et al. Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag+ and cag- Helicobacter pylori. J. Immunol. 163, 5552–5559 (1999).

    CAS  PubMed  Google Scholar 

  82. Meyer-Ter-Vehn, T., Covacci, A., Kist, M. & Pahl, H. L. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J. Biol. Chem. 275, 16064–16072 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Keates, S. et al. cag+ Helicobacter pylori induce transactivation of the epidermal growth factor receptor in AGS gastric epithelial cells. J. Biol. Chem. 276, 48127–48134 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Brandt, S., Kwok, T., Hartig, R., Konig, W. & Backert, S. NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc. Natl Acad. Sci. USA 102, 9300–9305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, S. Y., Lee, Y. C., Kim, H. K. & Blaser, M. J. Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8. Cell. Microbiol 8, 97–106 (2006).

    CAS  Google Scholar 

  86. Lamb, A. et al. Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep. 10, 1242–1249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Naumann, M. et al. Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island. J. Biol. Chem. 274, 31655–31662 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Kaparakis, M. et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell. Microbiol 12, 372–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004). This study identified an additional substrate of the cag secretion system, peptidoglycan.

    Article  CAS  Google Scholar 

  90. Allison, C. C., Kufer, T. A., Kremmer, E., Kaparakis, M. & Ferrero, R. L. Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J. Immunol. 183, 8099–8109 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Watanabe, T., et al. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J. Clin. Invest. 12 April 2010 (doi: 10.1172/JCI39481).

  92. Nagy, T. A. et al. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling. J. Infect. Dis. 199, 641–651 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, G., Olczak, A., Forsberg, L. S. & Maier, R. J. Oxidative stress-induced peptidoglycan deacetylase in Helicobacter pylori. J. Biol. Chem. 284, 6790–6800 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Franco, A. T. et al. Delineation of a carcinogenic Helicobacter pylori proteome. Mol. Cell. Proteomics 8, 1947–1958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsukashita, S. et al. Beta-catenin expression in intramucosal neoplastic lesions of the stomach. Comparative analysis of adenoma/dysplasia, adenocarcinoma and signet-ring cell carcinoma. Oncology 64, 251–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Cheng, X. X. et al. Frequent translocalization of beta-catenin in gastric cancers and its relevance to tumor progression. Oncol. Rep. 11, 1201–1207 (2004).

    CAS  PubMed  Google Scholar 

  97. Franco, A. T. et al. Activation of β-catenin by carcinogenic Helicobacter pylori. Proc. Natl Acad. Sci. USA 102, 10646–10651 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Suzuki, M. et al. Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J. Exp. Med. 202, 1235–1247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sokolova, O., Bozko, P. M. & Naumann, M. Helicobacter pylori suppresses glycogen synthase kinase 3beta to promote beta-catenin activity. J. Biol. Chem. 283, 29367–29374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nakayama, M. et al. Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J. Biol. Chem. 284, 1612–1619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289, 1560–1563 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Sun, J., Hobert, M. E., Rao, A. S., Neish, A. S. & Madara, J. L. Bacterial activation of beta-catenin signaling in human epithelia. Am. J. Physiol. Gastrointest Liver Physiol. 287, G220–G227 (2004).

  103. Wu, S., Morin, P. J., Maouyo, D. & Sears, C. L. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124, 392–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Monick, M. M. et al. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J. Immunol. 166, 4713–4720 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Wallasch, C. et al. Helicobacter pylori-stimulated EGF receptor transactivation requires metalloprotease cleavage of HB-EGF. Biochem. Biophys. Res. Commun. 295, 695–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Romano, M. et al. Helicobacter pylori upregulates expression of epidermal growth factor-related peptides, but inhibits their proliferative effect in MKN 28 gastric mucosal cells. J. Clin. Invest. 101, 1604–1613 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schiemann, U. et al. mRNA expression of EGF receptor ligands in atrophic gastritis before and after Helicobacter pylori eradication. Med. Sci. Monit. 8, CR53–CR58 (2002).

    CAS  PubMed  Google Scholar 

  108. Wong, B. C. et al. Epidermal growth factor and its receptor in chronic active gastritis and gastroduodenal ulcer before and after Helicobacter pylori eradication. Aliment Pharmacol. Ther. 15, 1459–1465 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Keates, S., Keates, A. C., Nath, S., Peek, R. M. & Kelly, C. P. Transactivation of the EGFR by cag+ Helicobacter pylori induces upregulation of the early growth response gene Egr-1 in gastric epithelial cells. Gut 54, 1363–1369 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Basu, S. et al. Helicobacter pylori protein HP0175 transactivates epidermal growth factor receptor through TLR4 in gastric epithelial cells. J. Biol. Chem. 283, 32369–32376 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Prenzel, N. et al. EGF receptor transactivation by G.-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Pece, S. & Gutkind, J. S. Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J. Biol. Chem. 275, 41227–41233 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Sunnarborg, S. W. et al. Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J. Biol. Chem. 277, 12838–12845 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Bauer, B., Bartfeld, S. & Meyer, T. F. H. pylori selectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagA. Cell. Microbiol 11, 156–169 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Peek, R. M. et al. Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils. Gastroenterology 118, 48–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Peek, R. M. Jr., et al. Helicobacter pylori cagA+ strains and dissociation of gastric epithelial cell proliferation from apoptosis. J. Natl Cancer Inst. 89, 863–868 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Maeda, S. et al. Analysis of apoptotic and antiapoptotic signalling pathways induced by Helicobacter pylori. Gut 50, 771–778 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yoon, Y. K. et al. Combination of EGFR and MEK1/2 inhibitor shows synergistic effects by suppressing EGFR/HER3-dependent AKT activation in human gastric cancer cells. Mol. Cancer Ther. 8, 2526–2536 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Mammano, E. et al. Epidermal growth factor receptor (EGFR): mutational and protein expression analysis in gastric cancer. Anticancer Res. 26, 3547–3550 (2006).

    CAS  PubMed  Google Scholar 

  121. Yan, F. et al. Epidermal growth factor receptor activation protects gastric epithelial cells from Helicobacter pylori-induced apoptosis. Gastroenterology 136, 1297–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Houghton, J. et al. Gastric cancer originating from bone marrow-derived cells. Science 306, 1568–1571 (2004). This article shifted the paradigm for understanding gastric carcinogenesis by demonstrating the ability of BMDCs to undergo malignant degeneration in the context of chronic gastric inflammation.

    Article  CAS  PubMed  Google Scholar 

  123. El-Omar, E. M. et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124, 1193–1201 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Tu, S. et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408–419 (2008). A remarkable paper delineating mechanisms through which a pro-inflammatory, acid-suppressive cytokine can induce gastric cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Oguma, K. et al. Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J. 27, 1671–1681 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Macarthur, M., Hold, G. L. & El-Omar, E. M. Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest Liver Physiol. 286, G515–G520 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Herrera, L. A., Benitez-Bribiesca, L., Mohar, A. & Ostrosky-Wegman, P. Role of infectious diseases in human carcinogenesis. Environ. Mol. Mutagen. 45, 284–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Meira, L. B. et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Invest. 118, 2516–2525 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Iida, M. et al. Natural history of gastric adenomas in patients with familial adenomatosis coli/Gardner's syndrome. Cancer 61, 605–611 (1988).

    Article  CAS  PubMed  Google Scholar 

  131. Nakamura, S., Matsumoto, T., Kobori, Y. & Iida, M. Impact of Helicobacter pylori infection and mucosal atrophy on gastric lesions in patients with familial adenomatous polyposis. Gut 51, 485–489 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Falk, P. G., Bry, L., Holgersson, J. & Gordon, J. I. Expression of a human alpha-1, 3/4-fucosyltransferase in the pit cell lineage of FVB/N. mouse stomach results in production of Leb-containing glycoconjugates: a potential transgenic mouse model for studying Helicobacter pylori infection. Proc. Natl Acad. Sci. USA 92, 1515–1519 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guruge, J. L. et al. Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc. Natl Acad. Sci. USA 95, 3925–3930 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Syder, A. J. et al. Helicobacter pylori attaches to NeuAc alpha 2, 3Gal beta 1, 4 glycoconjugates produced in the stomach of transgenic mice lacking parietal cells. Mol. Cell 3, 263–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Syder, A. J. et al. The impact of parietal cells on Helicobacter pylori tropism and host pathology: an analysis using gnotobiotic normal and transgenic mice. Proc. Natl Acad. Sci. USA 100, 3467–3472 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Oh, J. D., Karam, S. M. & Gordon, J. I. Intracellular Helicobacter pylori in gastric epithelial progenitors. Proc. Natl Acad. Sci. USA 102, 5186–5191 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Robinson, K. et al. Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut 57, 1375–1385 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Yamaoka, Y. et al. Relationship between the cagA 3' repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology 117, 342–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Argent, R. H. et al. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology 127, 514–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Higashi, H. et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA 99, 14428–14433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tolwinski, N. S. & Wieschaus, E. Rethinking WNT signaling. Trends Genet. 20, 177–181 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Peek Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Richard M. Peek's homepage

Glossary

Chronic superficial gastritis

An early step in the histological cascade proceeding from normal gastric mucosa to intestinal-type gastric cancer. Characterized by the infiltration of the gastric lamina propria with mononuclear and polymorphonuclear inflammatory cells.

Atrophic gastritis

An intermediate histological step in the progression to intestinal-type gastric adenocarcinoma. Characterized by variable gland loss and the encroachment of inflammatory cells into the glandular zones.

Attributable risk

The risk for a particular condition or disease that is defined by differences in the rates of that condition or disease between an exposed group and an unexposed group.

Panmictic population

A microbial population that is not clonal but is characterized by extensive recombination and genetic diversity.

Adaptive immune response

Also known as specific or acquired immunity. It is mediated by antigen-specific lymphocytes and antibodies, is highly antigen-specific and includes the development of immunological memory.

Lewis histo-blood-group antigen

A fucosylated antigen that is expressed on erythrocytes as well as in other body compartments, including the gastric epithelium.

Phase variation

The alteration of bacterial surface proteins (for example, outer membrane proteins, flagella and lipopolysaccharide) to evade the host immune system.

Pilus

Projection from the bacterial cell surface that allows bacteria to attach to other cells to facilitate the transfer of proteins or genetic material.

Lamina propria

A constituent of the moist linings of mucous membranes, which line different tubes of the body, including the gastrointestinal tract.

Polymorphic mosaic gene

A gene that exists as different alleles owing to defined regions that vary in sequence.

Parietal cell

A secretory cell that produces acid and is present within the gastric corpus.

Myeloid-derived suppressor cell (MDSC)

A heterogeneous and plastic cell. When isolated from normal bone marrow, it does not exhibit immunosuppresive effects. However, when exposed to the tumour microenvironment, it inhibits both CD4+ and CD8+ T cells.

Foveolar hyperplasia

Excessive proliferation of epithelial cells within foveolae, small pits from which gastric glands form that result in elongation and tortuosity of the glandular lumen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polk, D., Peek, R. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10, 403–414 (2010). https://doi.org/10.1038/nrc2857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing