Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Tumor suppressor Fbxw7 regulates TGFβ signaling by targeting TGIF1 for degradation

Abstract

Transforming growth factor-β (TGFβ) signaling regulates multiple cellular processes, including extracellular matrix production, cell growth, apoptosis and differentiation. Dysfunction of TGFβ signaling has been implicated in various human disorders ranging from vascular diseases to cancer. TGFβ signaling is negatively regulated by the transcriptional repressor TGFβ-induced factor 1 (TGIF1). The tumor suppressor Fbxw7 is the substrate-recognition factor of a ubiquitin ligase that targets multiple proteins for degradation, including c-Myc, cyclin E, c-Jun and Notch. Here, we describe that TGIF1 is targeted for degradation by Fbxw7 in a phosphorylation-dependent manner. Inactivation of Fbxw7 results in the accumulation of phosphorylated TGIF1 molecules and repression of TGFβ-dependent transcription. Cancer cell lines with inactivating mutations in Fbxw7 show enhanced levels of TGIF1 and attenuated TGFβ-dependent signaling. Importantly, inactivation of Fbxw7 attenuates TGFβ-dependent regulation of cell growth and migration. Taken together, our results suggest that Fbxw7 is a novel regulator of TGFβ signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bartholin L, Powers SE, Melhuish TA, Lasse S, Weinstein M, Wotton D . (2006). TGIF inhibits retinoid signaling. Mol Cell Biol 26: 990–1001.

    Article  CAS  Google Scholar 

  • Bengoechea-Alonso MT, Ericsson J . (2009). A phosphorylation cascade controls the degradation of active SREBP1. J Biol Chem 284: 5885–5895.

    Article  CAS  Google Scholar 

  • Faresse N, Colland F, Ferrand N, Prunier C, Bourgeade MF, Atfi A . (2008). Identification of PCTA, a TGIF antagonist that promotes PML function in TGF-beta signalling. EMBO J 27: 1804–1815.

    Article  CAS  Google Scholar 

  • Feng XH, Derynck R . (2005). Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21: 659–693.

    Article  CAS  Google Scholar 

  • Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW et al. (2001). Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294: 173–177.

    Article  CAS  Google Scholar 

  • Lo RS, Wotton D, Massague J . (2001). Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J 20: 128–136.

    Article  CAS  Google Scholar 

  • Massague J . (1998). TGF-beta signal transduction. Annu Rev Biochem 67: 753–791.

    Article  CAS  Google Scholar 

  • Massague J, Blain SW, Lo RS . (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103: 295–309.

    Article  CAS  Google Scholar 

  • Miyazono K, Suzuki H, Imamura T . (2003). Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 94: 230–234.

    Article  CAS  Google Scholar 

  • Moustakas A, Heldin CH . (2009). The regulation of TGFbeta signal transduction. Development 136: 3699–3714.

    Article  CAS  Google Scholar 

  • Onoyama I, Nakayama KI . (2008). Fbxw7 in cell cycle exit and stem cell maintenance: insight from gene-targeted mice. Cell Cycle 7: 3307–3313.

    Article  CAS  Google Scholar 

  • Pessah M, Prunier C, Marais J, Ferrand N, Mazars A, Lallemand F et al. (2001). c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity. Proc Natl Acad Sci USA 98: 6198–6203.

    Article  CAS  Google Scholar 

  • Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B et al. (2004). Inactivation of hCDC4 can cause chromosomal instability. Nature 428: 77–81.

    Article  CAS  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  Google Scholar 

  • Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI . (2001). Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413: 316–322.

    Article  CAS  Google Scholar 

  • Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW et al. (2005). Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 1: 379–391.

    Article  CAS  Google Scholar 

  • Tetzlaff MT, Yu W, Li M, Zhang P, Finegold M, Mahon K et al. (2004). Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA 101: 3338–3345.

    Article  CAS  Google Scholar 

  • Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S et al. (2004). Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 279: 9417–9423.

    Article  CAS  Google Scholar 

  • Wei W, Jin J, Schlisio S, Harper JW, Kaelin Jr WG . (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8: 25–33.

    Article  CAS  Google Scholar 

  • Welcker M, Clurman BE . (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8: 83–93.

    Article  CAS  Google Scholar 

  • Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101: 9085–9090.

    Article  CAS  Google Scholar 

  • Wotton D, Knoepfler PS, Laherty CD, Eisenman RN, Massague J . (2001). The Smad transcriptional corepressor TGIF recruits mSin3. Cell Growth Differ 12: 457–463.

    CAS  Google Scholar 

  • Wotton D, Lo RS, Lee S, Massague J . (1999a). A Smad transcriptional corepressor. Cell 97: 29–39.

    Article  CAS  Google Scholar 

  • Wotton D, Lo RS, Swaby LA, Massague J . (1999b). Multiple modes of repression by the Smad transcriptional corepressor TGIF. J Biol Chem 274: 37105–37110.

    Article  CAS  Google Scholar 

  • Wu MY, Hill CS . (2009). Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16: 329–343.

    Article  CAS  Google Scholar 

  • Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23: 2116–2125.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ulla Engström for peptide synthesis and antibody purification, and Aris Moustakas, Lars van der Heide and Peter Lönn for plasmids, antibodies and advice. This work was supported by a grant from the Ludwig Institute for Cancer Research Ltd. JE is the recipient of a Science Foundation Ireland Stokes Professorship Award (07/SK/B1242b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ericsson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bengoechea-Alonso, M., Ericsson, J. Tumor suppressor Fbxw7 regulates TGFβ signaling by targeting TGIF1 for degradation. Oncogene 29, 5322–5328 (2010). https://doi.org/10.1038/onc.2010.278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.278

Keywords

This article is cited by

Search

Quick links