Skip to main content
Log in

Pharmacokinetics of Coagulation Factors

Clinical Relevance for Patients with Haemophilia

  • Review Articles
  • Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Haemophilia is a recessively inherited coagulation disorder, in which an X-chromosome mutation causes a deficiency of either coagulation factor VIII (FVIII) in haemophilia A, or factor IX (FIX) in haemophilia B. Intravenous administration of FVIII or FIX can be used to control a bleeding episode, to provide haemostasis during surgery or for long term prophylaxis of bleeding. In special cases, activated factor VII (FVIIa) may be used instead of FVIII or FIX. The aim of this work is to review the pharmacokinetics of FVIII, FIX and FVIIa and to give an outline of the use of pharmacokinetics to optimise the treatment of patients with haemophilia.

The pharmacokinetics of FVIII are well characterised. The systemic clearance (CL) of FVIII is largely determined by the plasma level of von Willebrand factor (vWF), which protects FVIII from degradation. Typical average CL in patients with normal vWF levels is 3 ml/h/kg, with an apparent volume of distribution at steady state (Vss) that slightly exceeds the plasma volume of the patient, and the average elimination half-life (t 1/2) is around 14 hours. There are still some discrepancies in the literature on the pharmacokinetics of FIX. The average CL of plasma-derived FIX seems to be 4 ml/h/kg, the Vss is 3 to 4 times the plasma volume and the elimination t 1/2 often exceeds 30 hours. FVIIa has a much higher CL (average of 33 ml/h/kg), and a short terminal t 1/2 (at 2 to 3 hours). The Vss is 2 to 3 times the plasma volume.

Since the therapeutic levels of coagulation factors are well defined in most clinical situations, applied pharmacokinetics is an excellent tool to optimise therapy. Individual tailoring of administration in prophylaxis has been shown to considerably increase the cost effectiveness of the treatment. Dosage regimens for the treatment of bleeding episodes or for haemostasis during surgery are also designed using pharmacokinetic data, and the advantages of using a constant infusion instead of repeated bolus doses have been explored. The influence of antibodies (inhibitors) on the pharmacokinetics of FVIII and FIX is in part understood, and the doses of coagulation factor needed to treat a patient can tentatively be calculated from the antibody titre.

In conclusion, therapeutic monitoring of coagulation factor levels and the use of clinical pharmacokinetics to aid therapy are well established in the treatment of patients with haemophilia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The use of tradenames in this article is for product identification only and does not imply endorsement.

References

  1. Forbes CD, Aledort LM, Madhok R, editors. Hemophilia. London: Chapman & Hall Medical, 1997

    Google Scholar 

  2. White GC, Rosendaal F, Aledort LM, et al. Definitions in hemophilia. Thromb Haemost 2001; 85: 560

    PubMed  CAS  Google Scholar 

  3. Hedner U, Ingerslev J. Clinical use of recombinant FVIIa. Transfus Sci 1998; 19: 163–76

    Article  PubMed  CAS  Google Scholar 

  4. Kjellman H. Calculations of factor VIII in vivo recovery and half-life. Scand J Haematol 1984; 33 Suppl. 40: 165–74s

    Article  Google Scholar 

  5. Allain JP. Principles of in vivo recovery and survival studies. Scand J Haematol 1984; 33 Suppl. 41: 123–30

    Article  Google Scholar 

  6. Messori A, Longo G, Matucci M, et al. Clinical pharmacokinetics of factor VIII in patients with classic haemophilia. Clin Pharmacokinet 1987; 13: 365–80

    Article  PubMed  CAS  Google Scholar 

  7. Thompson AR. Factor IX concentrates for clinical use. Semin Thromb Hemost 1993; 19: 25–36

    Article  PubMed  CAS  Google Scholar 

  8. Björkman S, Carlsson M, Berntorp E. Pharmacokinetics of factor IX in patients with haemophilia B: methodological aspects and physiological interpretation. Eur J Clin Pharmacol 1994; 46: 325–32

    Article  PubMed  Google Scholar 

  9. Björkman S, Carlsson M. The pharmacokinetics of factor VIII and factor IX: methodology, pitfalls and applications. Haemophilia 1997; 3: 1–8

    Article  Google Scholar 

  10. Berntorp E. Factor VIII concentrates. In: Forbes CD, Aledort LM, Madhok R, editors. Hemophilia. London: Chapman & Hall Medical, 1997: 181–92

    Google Scholar 

  11. Weinstein RE. Immunoaffinity purification of factor VIII. Ann Clin Lab Sci 1989; 19: 84–91

    PubMed  CAS  Google Scholar 

  12. Sandberg H, Almstedt A, Brandt J, et al. Structural and functional characteristics of the B-domain-deleted recombinant factor VIII protein, r-VIII SQ. Thromb Haemost 2001; 85: 93–100

    PubMed  CAS  Google Scholar 

  13. Berntorp E, Björkman S, Carlsson M, et al. Biochemical and in vivo properties of high purity factor IX concentrates. Thromb Haemost 1993; 70: 768–73

    PubMed  CAS  Google Scholar 

  14. White GC, Beebe A, Nielsen B. Recombinant factor IX. Thromb Haemost 1997; 78: 261–5

    PubMed  CAS  Google Scholar 

  15. Stirling D, Ludlam CA. Therapeutic concentrates for the treatment of congenital deficiencies of factors VII, XI and XIII. Semin Thromb Hemost 1993; 19: 48–53

    Article  PubMed  CAS  Google Scholar 

  16. Over J. Methodology of the one-stage assay of factor VIII (VIII: C). Scand J Haematol 1984; 33 Suppl. 41: 13–24

    Article  Google Scholar 

  17. Hedner U, Nilsson IM. Methods. In: Nilsson IM. Haemorrhagic and thrombotic diseases. London: John Wiley & Sons, 1974: 209–35

    Google Scholar 

  18. Brozovic M, Stirling Y, Harricks C, et al. Factor VII in an industrial population. Br J Haematol 1974; 28: 381–91

    Article  PubMed  CAS  Google Scholar 

  19. Barrowcliffe TW Methodology of the two-stage assay of factor VIII (VIII:C). Scand J Haematol 1984; 33 Suppl. 41: 25–38

    Article  Google Scholar 

  20. Rosén S. Assay of factor VIII:C with a chromogenic substrate. Scand J Haematol 1984; 33 Suppl. 40: 139–45

    Article  Google Scholar 

  21. Wagenvoord R, Hendrix H, Tran T, et al. Development of a sensitive and rapid chromogenic factor IX assay for clinical use. Haemostasis 1990; 20: 276–88

    PubMed  CAS  Google Scholar 

  22. Morrissey JH, Macik BG, Neuenschwander PF, et al. Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 1993; 81: 734–44

    PubMed  CAS  Google Scholar 

  23. Cid AR, Lorenzo JI, Haya S, et al. A comparison of FVII:C and FVIIa assays for the monitoring of recombinant factor VIla treatment. Haemophilia 2001; 7: 39–41

    Article  PubMed  CAS  Google Scholar 

  24. Nilsson IM, Kirkwood TBL, Barrowcliffe TW. In vivo recovery of factor VIII: a comparison of one-stage and two-stage assay methods. Thromb Haemost 1979; 42: 1230–9

    PubMed  CAS  Google Scholar 

  25. Allain JP, Verroust F, Soulier JP. In vitro and in vivo characterization of factor VIII preparations. Vox Sang 1980; 38: 68–80

    Article  PubMed  CAS  Google Scholar 

  26. Hellstern P, Kiehl R, Miyashita C, et al. Factor VIII:C (FVIII:C) recovery and half-life after infusion of steam-treated high purity factor VIII concentrate in severe hemophilia A: comparison of one-stage assay, two-stage assay and a chromogenic substrate assay. Thromb Haemost 1986; 56: 353–9

    PubMed  CAS  Google Scholar 

  27. Dawson NJ, Kemball-Cook G, Barrowcliffe TW. Assay discrepancies with highly purified factor VIII concentrates. Haemostasis 1989; 19: 131–7

    PubMed  CAS  Google Scholar 

  28. Björkman S, Carlsson M, Berntorp E, et al. Pharmacokinetics of factor VIII in humans: obtaining clinically relevant data from comparative studies. Clin Pharmacokinet 1992; 22: 385–95

    Article  PubMed  Google Scholar 

  29. Mikaelsson M, Oswaldsson U, Nilsson IM. Potency and in vivo recovery of high purity factor VIII concentrates [letter]. Thromb Haemost 1994; 72: 160–1

    PubMed  CAS  Google Scholar 

  30. Lee C, Barrowcliffe T, Bray G, et al. Pharmacokinetic in vivo comparison using 1-stage and chromogenic substrate assays with two formulations of Hemofil-M. Thromb Haemost 1996; 76: 950–6

    PubMed  CAS  Google Scholar 

  31. Lee CA, Owens D, Bray G, et al. Pharmacokinetics of recombinant factor VIII (Recombinate) using one-stage clotting and chromogenic factor VIII assay. Thromb Haemost 1999; 82: 1644–7

    PubMed  CAS  Google Scholar 

  32. Hubbard AR, Bevan SA, Weller LJ. Potency estimation of recombinant factor VIII: effect of assay method and standard. Br J Haematol 2001; 113: 533–6

    Article  PubMed  CAS  Google Scholar 

  33. Lundblad RL, Kingdon HS, Mann KG, et al. Issues with the assay of factor VIII activity in plasma and factor VIII concentrates. Thromb Haemost 2000; 84: 942–8

    PubMed  CAS  Google Scholar 

  34. Lusher JM, Hillman-Wiseman C, Hurst D. In vivo recovery with products of very high purity-assay discrepancies. Haemophilia 1998; 4: 641–5

    Article  PubMed  CAS  Google Scholar 

  35. Mikaelsson M, Oswaldsson U, Jankowski MA. Measurement of factor VIII activity of B-domain deleted recombinant factor VIII. Semin Hematol 2001; 38 Suppl. 4: 13–23

    Article  PubMed  CAS  Google Scholar 

  36. Rousell RH, Kasper CK, Schwartz RS. The pharmacology of a new pasteurized antihemophilic factor concentrate derived from human blood plasma. Transfusion 1989; 29: 208–12

    Article  PubMed  CAS  Google Scholar 

  37. Morfini M, Lee M, Messori A. The design and analysis of half-life and recovery studies for factor VIII and factor IX. Thromb Haemost 1991; 66: 384–6

    PubMed  CAS  Google Scholar 

  38. Lee ML, Gomperts ED, Kingdon HS. A note on the calculation of recovery for factor VIII infusions [letter]. Thromb Haemost 1993; 69: 87

    PubMed  CAS  Google Scholar 

  39. Schimpf K, Rothmann P, Schumacher K. Comparison of factor VIII concentrates in non-bleeding patients. Scand J Haematol 1984; 33 Suppl. 41: 131–45

    Article  Google Scholar 

  40. Smit Sibinga CT, Daenen SMGJ, van Imhoff GW, et al. Heparin small pool high yield purified factor VIII: in vivo recovery and half-life of routinely produced freeze-dried concentrate. Thromb Haemost 1984; 51: 12–5

    PubMed  CAS  Google Scholar 

  41. Matucci M, Messori A, Donati-Cori G, et al. Kinetic evaluation of four factor VIII concentrates by model-independent methods. Scand J Haematol 1985; 34: 22–8

    Article  PubMed  CAS  Google Scholar 

  42. Kasper CK, Kim HC, Gomperts ED, et al. In vivo recovery and survival of monoclonal-antibody-purified factor VIII concentrates. Thromb Haemost 1991; 66: 730–3

    PubMed  CAS  Google Scholar 

  43. Morfini M, Longo G, Berntorp E, et al. Pharmacokinetics, thrombogenicity and safety of a double-treated prothrombin complex concentrate. Thromb Res 1993; 71: 175–84

    Article  PubMed  CAS  Google Scholar 

  44. Kaufman RJ. Biological regulation of factor VIII activity. Ann Rev Med 1992; 43: 325–39

    Article  PubMed  CAS  Google Scholar 

  45. Lenting P, van Mourik JA, Mertens K. The life cycle of coagulation factor VIII in view of its structure and function. J Am Soc Hematol 1998; 92: 3983–96

    CAS  Google Scholar 

  46. Over J, Sixma JJ, Doucet-de Bruine MHM, et al. Survival of 125iodine-labeled factor VIII in normals and patients with classic hemophilia. J Clin Invest 1978: 62: 223–34

    Article  PubMed  CAS  Google Scholar 

  47. Noe DA. A mathematical model of coagulation factor VIII kinetics. Haemostasis 1996; 26: 289–303

    PubMed  CAS  Google Scholar 

  48. Menache D, Aronson DL, Darr F, et al. Pharmacokinetics of von Willebrand factor and factor VIIIC in patients with severe von Willebrand disease (type 3 VWD): estimation of the rate of factor VIIIC synthesis. Br J Haematol 1996; 94: 740–5

    Article  PubMed  CAS  Google Scholar 

  49. Vlot AJ, Koppelman SJ, Meijers JCM, et al. Kinetics of factor VIII-von Willebrand factor association. Blood 1996; 87: 1809–16

    PubMed  CAS  Google Scholar 

  50. Weiss HJ, Sussman II, Hoyer LW. Stabilization of factor VIII in plasma by the von Willebrand factor. J Clin Invest 1977; 60: 390–404

    Article  PubMed  CAS  Google Scholar 

  51. Tuddenham EGD, Lane RS, Rotblat F, et al. Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human haemophilia A and von Willebrand’s disease. Br J Haematol 1982; 52: 259–67

    Article  PubMed  CAS  Google Scholar 

  52. Lethagen S, Berntorp E, Nilsson IM. Pharmacokinetics and hemostatic effect of different factor VIII/von Willebrand factor concentrates in von Willebrand’s disease type III. Ann Hematol 1992; 65: 253–9

    Article  PubMed  CAS  Google Scholar 

  53. Morfini M, Mannucci PM, Tenconi PM, et al. Pharmacokinetics of monoclonally-purified and recombinant factor VIII in patients with severe von Willebrand disease. Thrombos Haemostas 1993; 70: 270–2

    CAS  Google Scholar 

  54. Fijnvandraat K, Peters M, Ten Cate JW. Inter-individual variation in half-life of infused recombinant factor VIII is related to pre-infusion von Willebrand factor antigen levels. Br J Haematol 1995; 91: 474–6

    Article  PubMed  CAS  Google Scholar 

  55. Miller GJ, Howarth DJ, Attfield JC, et al. Haemostatic factors in human peripheral afferent lymph. Thromb Haemost 2000; 83: 427–32

    PubMed  CAS  Google Scholar 

  56. Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci 1979; 68: 1203–5

    Article  PubMed  CAS  Google Scholar 

  57. Smith KJ, Lusher JM, Cohen AR, et al. Initial clinical experience with a new pasteurized monoclonal antibody purified factor VIIIC. Semin Hematol 1990; 27 Suppl. 2: 25–9

    PubMed  CAS  Google Scholar 

  58. Schwartz RS, Abildgaard CF, Aledort LM, et al. Human recombinant DNA-derived antihemophilic factor (factor VIII) in the treatment of hemophilia A. N Engl J Med 1990; 323: 1800–5

    Article  PubMed  CAS  Google Scholar 

  59. Knevelman A, de Wit HJC, Potstra P, et al. Development and small-scale production of a severely heated factor VIII concentrate. Vox Sang 1994; 66: 89–95

    Article  PubMed  CAS  Google Scholar 

  60. Fijnvandraat K, Berntorp E, ten Cate JW, et al. Recombinant, B-domain deleted factor VIII (r-VIIISQ): pharmacokinetics and initial safety aspects in hemophilia A patients. Thromb Haemost 1997; 77: 298–302

    PubMed  CAS  Google Scholar 

  61. McMillan CW, Webster WP, Roberts HR, et al. Continuous intravenous infusion of factor VIII in classic haemophilia. Br J Haematol 1970; 18: 659–67

    Article  PubMed  CAS  Google Scholar 

  62. Noe DA, Bell WR, Ness PM, et al. Plasma clearance rates of coagulation factors VIII and IX in factor-deficient individuals. Blood 1986; 67: 969–72

    PubMed  CAS  Google Scholar 

  63. Harrison JFM, Bloom AL, Abildgaard CF. The pharmacokinetics of recombinant factor VIII. Semin Hematol 1991; 28 Suppl. 1: 29–35

    PubMed  CAS  Google Scholar 

  64. Morfini M, Longo G, Messori A, et al. Pharmacokinetic properties of recombinant factor VIII compared with a monoclon-ally purified concentrate (Hemofil® M). Thromb Haemost 1992; 68: 433–5

    PubMed  CAS  Google Scholar 

  65. White GC, Courter S, Bray GL, et al. A multicenter study of recombinant factor VIII (Recombinate™) in previously treated patients with hemophilia A. Thromb Haemost 1997; 77: 660–7

    PubMed  CAS  Google Scholar 

  66. Longo G, Matucci M, Messori A, et al. Pharmacokinetics of a new heat-treated concentrate of factor VIII estimated by model-independent methods. Thromb Res 1986; 42: 471–6

    Article  PubMed  CAS  Google Scholar 

  67. Bona RD, Weinstein RA, Weisman SJ, et al. The use of continuous infusion of factor concentrates in the treatment of hemophilia. Am J Hematol 1989; 32: 8–13

    Article  PubMed  CAS  Google Scholar 

  68. Kasper CK. In vivo recovery and early half-life of infused factor VIII in haemophilia A. Haemophilia 1995; 1: 14–6

    Article  Google Scholar 

  69. Dazzi F, Tison T, Vianello P, et al. High incidence of anti-FVIII antibodies against non-coagulant epitopes in haemophilia A patients: a possible role for the half-life of transfused FVIII. Br J Haematol 1996; 93: 688–93

    Article  PubMed  CAS  Google Scholar 

  70. Vlot AJ, Mauser-Bunschoten EP, Zarkova AG, et al. The half-life of infused factor VIII is shorter in hemophiliac patients with blood group 0 than in those with blood group A. Thromb Haemost 2000; 83: 65–9

    PubMed  CAS  Google Scholar 

  71. Carlsson M, Berntorp E, Björkman S, et al. Improved cost-effectiveness by pharmacokinetic dosing of factor VIII in prophylactic treatment of haemophilia A. Haemophilia 1997; 3: 96–101

    Article  Google Scholar 

  72. Aronstam A, McLellan DS, Wassef M, et al. Effect of height and weight on the in vivo recovery of transfused factor VIII C. J Clin Pathol 1982; 35: 289–91

    Article  PubMed  CAS  Google Scholar 

  73. Feldschuh J, Enson Y. Prediction of the normal blood volume. Relation of blood volume to body habitus. Circulation 1977; 56: 605–12

    Article  PubMed  CAS  Google Scholar 

  74. Heimark RL, Schwartz SM. Binding of coagulation factors IX and X to the endothelial cell surface. Biochem Biophys Res Commun 1983; 111: 723–31

    Article  PubMed  CAS  Google Scholar 

  75. Stern DM, Drillings M, Nossel HL, et al. Binding of factors IX and IXa to cultured vascular endothelial cells. Proc Natl Acad Sci USA 1983; 80: 4119–23

    Article  PubMed  CAS  Google Scholar 

  76. Hoag MS, Johnson FF, Robinson JA, et al. Treatment of hemophilia B with a new clotting-factor concentrate. N Engl J Med 1969; 280: 581–6

    Article  PubMed  CAS  Google Scholar 

  77. Morfini M, Longo G, Cinotti S, et al. Comparative single-dose pharmacokinetic study of Alphanine vs. Profilnine [abstract]. Thromb Haemost 1991; 65: 1362

    Google Scholar 

  78. Goudemand J, Peynet J, Chambost H, et al. A cross-over pharmacokinetic study of a double viral inactivated factor IX concentrate (15 nm filtration and SD) compared to a SD factor IX concentrate. Thromb Haemost 1998; 80: 919–24

    PubMed  CAS  Google Scholar 

  79. White G, Shapiro A, Ragni M, et al. Clinical evaluation of recombinant factor IX. Semin Hematol 1998; 35 Suppl. 2: 33–8

    PubMed  CAS  Google Scholar 

  80. Björkman S, Shapiro AD, Berntorp E. Pharmacokinetics of recombinant factor IX in relation to age of the patient: Implications for dosing in prophylaxis. Haemophilia 2001; 7: 133–9

    Article  PubMed  Google Scholar 

  81. White GC, Shapiro AD, Kurczynski EM, et al. Variability of in vivo recovery of Factor IX after infusion of monoclonal antibody purified Factor IX concentrates in patients with hemophilia B. Thromb Haemost 1995; 73: 779–84

    PubMed  CAS  Google Scholar 

  82. Hedner U. Dosing and monitoring NovoSeven® treatment. Haemostasis 1996; 26 Suppl. 1: 102–8

    PubMed  CAS  Google Scholar 

  83. Lindley CM, Sawyer WT, Macik BG, et al. Pharmacokinetics and pharmacodynamics of recombinant factor VIIa. Clin Pharmacol Ther 1994; 55: 638–48

    Article  PubMed  CAS  Google Scholar 

  84. Girard P, Nony P, Erhardtsen E, et al. Population pharmacokinetics of recombinant factor VIIa in volunteers anticoagulated with acenocoumarol. Thromb Haemost 1998; 80: 109–13

    PubMed  CAS  Google Scholar 

  85. Bernstein DE, Jeffers L, Erhardtsen E, et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology 1997; 113: 1930–7

    Article  PubMed  CAS  Google Scholar 

  86. Erhardtsen E. Pharmacokinetics of recombinant activated factor VII (rFVIIa). Semin Thromb Hemost 2000; 26: 385–91

    Article  PubMed  CAS  Google Scholar 

  87. Berrettini M, Mariani G, Schiavoni M, et al. Pharmacokinetic evaluation of recombinant, activated factor VII in patients with inherited factor VII deficiency. Haematologica 2001; 86: 640–5

    PubMed  CAS  Google Scholar 

  88. Duncan B, Lloyd J, Lesnikowski E. Successive factor VIII doses for a hemophiliac undergoing major surgery calculated on a microcomputer. Thromb Haemost 1982; 47: 66–8

    PubMed  CAS  Google Scholar 

  89. Longo G, Matucci M, Morfini M, et al. A calculator program for individualizing factor VIII dosage. Drug Intell Clin Pharm 1984; 18: 726–30

    PubMed  CAS  Google Scholar 

  90. Messori A, Longo G, Morfini M, et al. Individualization of factor VIII dosage. J Clin Hosp Pharm 1984; 9: 95–103

    PubMed  CAS  Google Scholar 

  91. Carlsson M, Berntorp E, Björkman S, et al. Pharmacokinetic dosing in prophylactic treatment of hemophilia A. Eur J Haematol 1993; 51: 247–52

    Article  PubMed  CAS  Google Scholar 

  92. Carlsson M, Björkman S, Berntorp E. Multidose pharmacokinetics of factor IX: implications for dosing in prophylaxis. Haemophilia 1998; 4: 83–8

    Article  PubMed  CAS  Google Scholar 

  93. Nilsson IM, Berntorp E, Löfqvist T, et al. Twenty-five years experience of prophylactic treatment in severe haemophilia A and B. J Intern Med 1992; 232; 25–32

    Article  PubMed  CAS  Google Scholar 

  94. Bohn RL, Avorn J, Glynn RJ, et al. Prophylactic use of factor VIII: an economic evaluation. Thromb Haemost 1998; 79: 932–7

    PubMed  CAS  Google Scholar 

  95. Kasper CK, Dietrich SL, Rapaport SI. Hemophilia prophylaxis with factor VIII concentrate. Arch Intern Med 1970; 125: 1004–9

    Article  PubMed  CAS  Google Scholar 

  96. Schimpf K, Fischer B, Rothmann R Hemophilia A prophylaxis with factor VIII concentrate in a home-treatment program: a controlled study. Scand J Haematol 1977; Suppl. 30: 79–80

    CAS  Google Scholar 

  97. Rizza CR. The management of patients with coagulation factor deficiencies. In: Biggs R, editor. Human blood coagulation, haemostasis and thrombosis. Oxford: Blackwell Scientific Publications, 1972: 336–60

    Google Scholar 

  98. Rickard AK. Guidelines for therapy and optimal dosages of coagulation factors for treatment of bleeding and surgery in haemophilia. Haemophilia 1995; 1 Suppl. 1: 8–13

    Article  Google Scholar 

  99. Allain JP. Dose requirement for replacement therapy in hemophilia A. Thromb Haemost 1979; 42: 825–31

    PubMed  CAS  Google Scholar 

  100. Courter SG, Bedrosian CL. Clinical evaluation of B-domain deleted recombinant factor VIII in previously treated patients. Semin Hematol 2001; 38 Suppl. 4: 44–51

    Article  PubMed  CAS  Google Scholar 

  101. Kessler CM, Spira J, Fraunhofer A, et al. Safety and efficacy of an albumin-free formulated, B-domain deleted recombinant factor VIII (BBDrFVIII, r-VIII SQ) in previously treated patients (PTPs). Afour-year update [abstract]. Thromb Haemost 1999; Suppl.: 472–3

  102. Kasper CK, Boylen AL, Ewing NP, et al. Hematologic management of hemophilia Afor surgery. JAMA 1985; 253: 1279–83

    Article  PubMed  CAS  Google Scholar 

  103. Longo G, Messori A, Morfini M, et al. Evaluation of factor VIII pharmacokinetics in hemophilia-A subjects undergoing surgery and description of a nomogram for dosing calculations. Am J Hematol 1989; 30: 140–9

    Article  PubMed  CAS  Google Scholar 

  104. Hay CRM, Doughty HI, Savidge GF. Continuous infusion of factor VIII for surgery and major bleeding. Blood Coagul Fibrinol 1996; 7 Suppl. 1: S15–9

    Article  CAS  Google Scholar 

  105. Ho AMH, Dion P, Karmakar MK, et al. A pharmacokinetic model for factor VIII dosing during active haemorrhage in patients with haemophilia A. Anaesthesia 2001; 56: 785–90

    Article  PubMed  CAS  Google Scholar 

  106. Martinowitz U, Schulman S, Gitel S, et al. Adjusted dose continuous infusion of factor VIII in patients with haemophilia A. Br J Haematol 1992; 82: 729–34

    Article  PubMed  CAS  Google Scholar 

  107. Schulman S, Varon D, Keller N, et al. Monoclonal purified F VIII for continuous infusion: stability, microbiological safety and clinical experience. Thromb Haemost 1994; 72: 403–7

    PubMed  CAS  Google Scholar 

  108. Batorova A, Martinowitz U. Intermittent injections vs. continuous infusion of factor VIII in haemophilia patients undergoing major surgery. Br J Haematol 2000; 110: 715–20

    Article  PubMed  CAS  Google Scholar 

  109. Holmberg L, Nilsson IM. AHF related protein in clinical praxis. Scand J Haematol 1974; 12: 221–31

    Article  PubMed  CAS  Google Scholar 

  110. Cucuianu MP, Missits I, Olinic N, et al. Increased ristocetin-co-factor in acute myocardial infarction: a component of the acute phase reaction. Thromb Haemost 1980; 43: 41–4

    PubMed  CAS  Google Scholar 

  111. Davis FM, McDermott E, Hickton C, et al. Influence of spinal and general anaesthesia on haemostasis during total hip arthroplasty. Br J Anaesth 1987; 59: 561–71

    Article  PubMed  CAS  Google Scholar 

  112. Donadoni R, Baele G, Devulder J, et al. Coagulation and fibrinolytic parameters in patients undergoing total hip replacement: influence of the anaesthesia technique. Acta Anaesthesiol Scand 1989; 33: 588–92

    Article  PubMed  CAS  Google Scholar 

  113. Schulman S, Gitel S, Zivelin A, et al. The feasibility of using concentrates containing factor IX for continuous infusion. Haemophilia 1995; 1: 103–10

    Article  Google Scholar 

  114. Schulman S, Wallensten R, White B, et al. Efficacy of a high purity, chemically treated and nanofiltered factor IX concentrate for continuous infusion in haemophilia patients undergoing surgery. Haemophilia 1999; 5: 96–100

    Article  PubMed  CAS  Google Scholar 

  115. Ménart C, Petit PY, Attali O, et al. Efficacy and safety of continuous infusion of Mononine® during five surgical procedures in three hemophilic patients. Am J Hematol 1998; 58: 110–6

    Article  PubMed  Google Scholar 

  116. Chowdary P, Dasani H, Jones JAH, et al. Recombinant factor IX (BeneFix) by adjusted continuous infusion: a study of stability, sterility and clinical experience. Haemophilia 2001; 7: 140–5

    Article  PubMed  CAS  Google Scholar 

  117. Hathaway WE, Christian MJ, Clarke SL, et al. Comparison of continuous and intermittent factor VIII concentrate therapy in hemophilia A. Am J Hematol 1984; 17: 85–8

    Article  PubMed  CAS  Google Scholar 

  118. Schulman S, Jensen MB, Varon D, et al. Feasibility of using recombinant factor VIIa in continuous infusion. Thromb Haemost 1996; 75: 432–6

    PubMed  CAS  Google Scholar 

  119. Schulman S, d’Oiron R, Martinowitz U, et al. Experiences with continuous infusion of recombinant activated factor VII. Blood Coagul Fibrinol 1998; 9 Suppl. 1: S97–101

    CAS  Google Scholar 

  120. Kasper CK. Complications of hemophilia A treatment: factor VIII inhibitors. Ann NY Acad Sci 1991; 614: 97–105

    Article  PubMed  CAS  Google Scholar 

  121. Kasper CK. Treatment of factor VIII inhibitors. In: Coller BS, editor. Progress in hemostasis and thrombosis. 9th ed. Philadelphia (PA): WB Saunders, 1989: 57–86

    Google Scholar 

  122. Addiego J, Kasper C, Abildgaard C, et al. Frequency of inhibitor development in haemophiliacs treated with low-purity factor VIII. Lancet 1993; 342: 462–4

    Article  PubMed  CAS  Google Scholar 

  123. Gruppo R, Bray GL, Schroth M, et al. Safety and immunogenicity of recombinant factor VIII (Recombinate™) in previously untreated patients (PUPs): a 6.5 year update [abstract]. Thromb Haemost 1997; Suppl.: 162

  124. Lusher J, Arkin S, Abildgaard CF, et al. Recombinant FVIII (Kogenate) treatment of previously untreated patients (PUPs) with hemophilia A: Update of safety, efficacy and inhibitor development after seven study years [abstract]. Thromb Haemost 1997; Suppl.: 162–3

  125. Briet E. Factor IX inhibitors in haemophilia B patients: their incidence and prospects for development with high purity factor IX products. Blood Coagul Fibrinol 1991; 2 Suppl. 1: 47–50

    Article  Google Scholar 

  126. Kasper CK, Aledort LM, Counts RB, et al. A more uniform measurement of factor VIII inhibitors [letter]. Thromb Diath Haemorrh 1975; 34: 869–72

    Google Scholar 

  127. Nilsson IM, Hedner U. Immunosuppressive treatment in haemophiliacs with inhibitors. Scand J Haematol 1976; 16: 369–82

    Article  PubMed  CAS  Google Scholar 

  128. Nilsson IM, Berntorp E, Zettervall O, et al. Noncoagulation inhibitory factor VIII antibodies after induction of tolerance to factor VIII in hemophilia A patients. Blood 1990; 75: 378–83

    PubMed  CAS  Google Scholar 

  129. Nilsson IM, Berntorp E, Zettervall O. Induction of immune tolerance in patients with hemophilia and antibodies to factor VIII by combined treatment with intravenous IgG, cyclophosphamide, and factor VIII. N Engl J Med 1988; 318: 947–50

    Article  PubMed  CAS  Google Scholar 

  130. Allain JP, Frommel D. Antibodies to factor VIII. V. Patterns of immune response to factor VIII in hemophilia A. Blood 1976; 47: 973–82

    PubMed  CAS  Google Scholar 

  131. Peerlinck K, Arnout J, Di Giambattista M, et al. Factor VIII inhibitors in previously treated haemophilia A patients with a double virus-inactivated plasma derived factor VIII concentrate. Thromb Haemost 1997; 77: 80–6

    PubMed  CAS  Google Scholar 

  132. Gilles JGG, Arnout J, Vermylen J, et al. Anti-factor VIII antibodies of hemophiliac patients are frequently directed towards nonfunctional determinants and do not exhibit isotypic restriction. Blood 1993; 82: 2452–61

    PubMed  CAS  Google Scholar 

  133. Mondorf W, Klinge J, Luban NLC, et al. Low factor VIII recovery in haemophilia A patients without inhibitor titre is not due to the presence of anti-factor VIII antibodies undetectable by the Bethesda assay. Haemophilia 2001; 7: 13–9

    Article  PubMed  CAS  Google Scholar 

  134. Nilsson IM, Berntorp E, Zettervall O. Induction of split tolerance and clinical cure in high-responding hemophiliacs with factor IX antibodies. Proc Natl Acad Sci USA 1986; 83: 9169–73

    Article  PubMed  CAS  Google Scholar 

  135. Lusher JM, Roberts HR, Davignon G, et al. Arandomized, double-blind comparison of two dosage levels of recombinant factor VIIa in the treatment of joint, muscle and mucocutaneous haemorrhages in persons with haemophilia A and B, with and without inhibitors. Haemophilia 1998; 4: 790–8

    Article  PubMed  CAS  Google Scholar 

  136. Shapiro AD, Gilchrist GS, Hoots WK, et al. Prospective, randomised trial of two doses of rFVIIa (NovoSeven) in haemophilia patients with inhibitors undergoing surgery. Thromb Haemost 1998; 80: 773–8

    PubMed  CAS  Google Scholar 

  137. Lubin IM, Healey JF, Scandella D, et al. Elimination of a major inhibitor epitope in factor VIII. J Biol Chem 1994; 269: 8639–41

    PubMed  CAS  Google Scholar 

  138. Barrow RT, Healey JF, Gailani D, et al. Reduction of the antigenicity of factor VIII toward complex inhibitory antibody plasmas using multiply-substituted hybrid human/porcine factor VIII molecules. Blood 2000; 95: 564–8

    PubMed  CAS  Google Scholar 

  139. Liles D, Landen CN, Monroe DM, et al. Extravascular administration of factor IX: potential for replacement therapy of canine and human hemophiliaB. Thromb Haemost 1997; 77: 944–8

    PubMed  CAS  Google Scholar 

  140. Hemker HC, Hermens WT, Muller AD, et al. Oral treatment of haemophilia A by gastrointestinal absorption of factor VIII entrapped in liposomes. Lancet 1980 Jan 12; 70–1

    Article  Google Scholar 

  141. High KA. Gene transfer as an approach to treating hemophilia. Circ Res 2001; 88: 137–44

    Article  PubMed  CAS  Google Scholar 

  142. Cameron C, Notley C, Hoyle S, et al. The canine factor VIII cDNA and 5′-flanking sequence. Thromb Haemost 1998; 79: 317–22

    PubMed  CAS  Google Scholar 

  143. Roth DA, Tawa NE, O’Brien JM, et al. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001; 344: 1735–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Both authors have participated in industry-sponsored studies on coagulation factors, however no industry funding was involved in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Björkman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björkman, S., Berntorp, E. Pharmacokinetics of Coagulation Factors. Clin Pharmacokinet 40, 815–832 (2001). https://doi.org/10.2165/00003088-200140110-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140110-00003

Keywords

Navigation