Skip to main content

The Commensal Microbiology of the Gastrointestinal Tract

  • Chapter
Book cover GI Microbiota and Regulation of the Immune System

Part of the book series: Advances in Experimental Medicine and Biology ((volume 635))

Abstract

The gastrointestinal (GI) tract is a dynamic environment and therefore the stability of the commensal community, or microbiota, is under constant challenge. Microscopic observations have revealed that the majority of bacteria present in the GI tract are not detected using standard culturing techniques, however with the application of culture-independent techniques it has been estimated that between 500 to 1000 bacterial species inhabit the human GI tract. Numerically predominant organisms in the microbiota belong to two eubacterial divisions, the Cytophaga-Flavobacterium-Bacteroides (CFB) and the Firmicutes, and fall into three main groups; Clostridium rRNA subcluster XIVa, Clostridium rRNA subcluster IV and Bacteroides. The prevalence and diversity of bacteria in different areas of the GI tract is influenced by the different conditions at these sites and thus the microbiota of the stomach and jejunum varies with that of the large intestine. Additionally, host genotype, age and diet have all been shown to affect microbial diversity in the GI tract. The distal intestine harbours the highest bacterial cell densities for any known ecosystem. Characterizing the species composition of the healthy microbiota may be a key step in identifying bacterial or associated physiological conditions that are present or absent in an unhealthy microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonnenburg JL, Angenent LT, Gordon JI. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine. Nat Immunol 2004; 5:569–573.

    Article  PubMed  CAS  Google Scholar 

  2. Xu J, Gordon JL. Inaugural Article: Honor thy symbionts. Proc Natl Acad Sci USA 2003; 100:10452–10459.

    Article  PubMed  CAS  Google Scholar 

  3. Bäckhed F, Ley RE, Sonnenburg JL et al. Host-bacterial mutualism in the human intestine. Science 2005; 307:1915–1920.

    Article  PubMed  CAS  Google Scholar 

  4. Bik EM, Eckburg PB, Gill SR et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 2006; 103:732–737.

    Article  PubMed  CAS  Google Scholar 

  5. Eckburg PB, Bik EM, Bernstein CN et al. Diversity of the human intestinal microbial flora. Science 2005; 308:1635–1638.

    Article  PubMed  Google Scholar 

  6. Dubos R, Schaedler RW, Costello R et al. Indigenous, normal and autochthonous flora of the gastrointestinal tract. J Exp Med 1965; 122:67–76.

    Article  PubMed  CAS  Google Scholar 

  7. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977; 31:107–133.

    Article  PubMed  CAS  Google Scholar 

  8. Scheppach W, Bartram HP, Richter F. Role of short-chain fatty acids in the prevention of colorectal cancer. Eur J Cancer 1995; 31A:1077–1080.

    Article  PubMed  CAS  Google Scholar 

  9. Roediger WE. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 1980; 2:712–715.

    Article  PubMed  CAS  Google Scholar 

  10. Hague A, Singh B, Paraskeva C. Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate. Gastroenterology 1997; 112:1036–1040.

    Article  PubMed  CAS  Google Scholar 

  11. Ayabe T, Satchell DP, Wilson CL et al. Secretion of microbial alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000; 1:113–118.

    Article  PubMed  CAS  Google Scholar 

  12. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1998; 95:6578–6583.

    Article  PubMed  CAS  Google Scholar 

  13. Moore WE, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 1974; 27:961–979.

    PubMed  CAS  Google Scholar 

  14. Finegold SM, Attebery HR, Sutter VL. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 1974; 27:1456–1469.

    PubMed  CAS  Google Scholar 

  15. Suau A, Bonnet R, Sutren M et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999; 65:4799–4807.

    PubMed  CAS  Google Scholar 

  16. Tannock GW, Munro K, Harmsen HJ et al. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 2000; 66:2578–2588.

    Article  PubMed  CAS  Google Scholar 

  17. Miller TL, Wolin MJ. Stability of Methanobrevibacter smithii populations in the microbial flora excreted from the human large bowel. Appl Environ Microbiol 1983; 45:317–318.

    PubMed  CAS  Google Scholar 

  18. Miller TL, Wolin MJ. Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 1982; 131:14–18.

    Article  PubMed  CAS  Google Scholar 

  19. Weaver GA, Krause JA, Miller TL et al. Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut 1986; 27:698–704.

    Article  PubMed  CAS  Google Scholar 

  20. Rieu-Lesme F, Delbes C, Sollelis L. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem. Curr Microbiol 2005; 51:317–321.

    Article  PubMed  CAS  Google Scholar 

  21. Collins, MD, Lawson PA, Willems A et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826.

    Article  PubMed  CAS  Google Scholar 

  22. Zoetendal EG, Ben-Amor K, Harmsen HJ et al. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 2002; 68:4225–4332

    Article  PubMed  CAS  Google Scholar 

  23. Sghir A, Gramet G, Suau A et al. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 2000; 66:2263–2266.

    Article  PubMed  CAS  Google Scholar 

  24. Marteau P, Pochart P, Dore J et al. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 2001; 67:4939–4942.

    Article  PubMed  CAS  Google Scholar 

  25. Jansen GJ, Wildeboer-Veloo AC, Tonk RH et al. Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J Microbiol Methods 1999; 37:215–221.

    Article  PubMed  CAS  Google Scholar 

  26. Hold GL, Schwiertz A, Aminov RI et al. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol 2003; 69:4320–4324.

    Article  PubMed  CAS  Google Scholar 

  27. Harmsen HJ, Raangs GC, He T et al. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 2002; 68:2982–2990.

    Article  PubMed  CAS  Google Scholar 

  28. Franks AH, Harmsen HJ, Raangs GC et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 1998; 64:3336–3345.

    PubMed  CAS  Google Scholar 

  29. Maukonen J, Satokari R, Matto J et al. Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant faecal bacteria. J Med Microbiol 2006; 55:625–633.

    Article  PubMed  CAS  Google Scholar 

  30. Hayashi H, Sakamoto M, Kitahara M et al. Diversity of the Clostridium coccoides group in human fecal microbiota as determined by 16S rRNA gene library. FEMS Microbiol Lett 2006; 257:202–207.

    Article  PubMed  CAS  Google Scholar 

  31. Duncan SH, Hold GL, Barcenilla A et al. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human feces. Int J Syst Evol Microbiol 2002; 52:1615–1620

    Article  PubMed  CAS  Google Scholar 

  32. Barcenilla A, Pryde SE, Martin JC et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 2000; 66:1654–1661.

    Article  PubMed  CAS  Google Scholar 

  33. Lay C, Sutren M, Rochet V et al. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 2005; 7:933–946.

    Article  PubMed  CAS  Google Scholar 

  34. Saunier K, Rouge C, Lay C et al. Enumeration of bacteria from the Clostridium leptum subgroup in human faecal microbiota using Clep 1156 16S rRNA probe in combination with helper and competitor oligonucleotides. Syst Appl Microbiol 2005; 28:454–464.

    Article  PubMed  CAS  Google Scholar 

  35. Duncan SH, Hold GL, Harmsen HJ et al. Growth requirements and fermentation products of Fusobacterium prausnitzii and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:2141–2146.

    Article  PubMed  CAS  Google Scholar 

  36. Suau A, Rochet V, Sghir A et al. Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol 2001; 24:139–145.

    Article  PubMed  CAS  Google Scholar 

  37. Hayashi H, Sakamoto M, Benno Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 2002; 46:535–548.

    PubMed  CAS  Google Scholar 

  38. Pryde SE, Duncan SH, Hold GL et al. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 2002; 217:133–139.

    Article  PubMed  CAS  Google Scholar 

  39. Matsuki T, Watanabe K, Fujimoto J et al. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 2002; 68:5445–5451.

    PubMed  CAS  Google Scholar 

  40. Matsuki T, Watanabe K, Fujimoto J et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 2004; 70: 7220–7228.

    Article  PubMed  CAS  Google Scholar 

  41. Dore J, Sghir A, Hannequart-Gramet G et al. Design and evaluation of a 16S rRNA-targeted oligo-nucleotide probe for specific detection and quantitation of human faecal Bacteroides populations. Syst Appl Microbiol 1998; 21:65–71.

    PubMed  CAS  Google Scholar 

  42. Hold GL, Pryde SE, Russell VJ et al. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol 2002; 39:33–39.

    Article  CAS  PubMed  Google Scholar 

  43. Lay C, Rigottier-Gois L, Holmstrom K et al. Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 2005; 71:4153–4155.

    Article  PubMed  CAS  Google Scholar 

  44. Mueller S, Saunier K, Hanisch C et al. Differences in fecal microbiota in different European study populations in relation to age, gender and country: a cross-sectional study. Appl Environ Microbiol 2006; 72:1027–1033.

    Article  PubMed  CAS  Google Scholar 

  45. Klijn A, Mercenier A, Arigoni F. Lessons from the genomes of bifidobacteria. FEMS Microbiol Rev 2005; 29:491–509.

    Article  PubMed  CAS  Google Scholar 

  46. Langendijk PS, Schut F, Jansen GJ et al. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 1995; 61:3069–3075.

    PubMed  CAS  Google Scholar 

  47. Welling GW, Elfferich P, Raangs GC et al. 16S ribosomal RNA-targeted oligonucleotide probes for monitoring of intestinal tract bacteria. Scand J Gastroenterol Suppl 1997; 222:17–19.

    PubMed  CAS  Google Scholar 

  48. Matsuki T, Watanabe K, Fujimoto J et al. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 2004; 70:167–173.

    Article  PubMed  CAS  Google Scholar 

  49. Adamsson I, Nord CE, Lundquist P et al. Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J. Antimicrob. Chemother 1999; 44:629–640.

    Article  PubMed  CAS  Google Scholar 

  50. Monstein HJ, Tiveljung A, Kraft CH et al. Profiling of bacterial flora in gastric biopsies from patients with Helicobacter pylori-associated gastritis and histologically normal control individuals by temperature gradient gel electrophoresis and 16S rDNA sequence analysis. J Med Microbiol 2000; 49:817–822.

    PubMed  CAS  Google Scholar 

  51. Meshkinpour H, Thrupp LD, Shiffler P et al. Reflux gastritis syndrome. Role of upper gastrointestinal microflora. Arch Surg 1981; 116:1148–1152.

    PubMed  CAS  Google Scholar 

  52. Zoetendal EG, von Wright A, Vilponnen-Salmela T et al. Mucosa-associated bacteria in the gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from the feces. Appl Environ Microbiol 2002; 68:3401–3407.

    Article  PubMed  CAS  Google Scholar 

  53. Wang M, Ahrne S, Jeppsson B et al. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 2005; 54:219–231.

    Article  PubMed  CAS  Google Scholar 

  54. Wang X, Heazlewood SP, Krause DO et al. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 2003; 95:508–520.

    Article  PubMed  CAS  Google Scholar 

  55. Lepage P, Seksik P, Sutren M et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 2005; 11:473–480.

    Article  PubMed  Google Scholar 

  56. Nielsen DS, Moller PL, Rosenfeldt V et al. Case study of the distribution of mucosa-associated Bifido-bacterium species, Lactobacillus species and other lactic acid bacteria in the human colon. Appl Environ Microbiol 2003; 69:7545–7548.

    Article  PubMed  CAS  Google Scholar 

  57. Poxton IR, Brown R, Sawyerr A et al. Mucosa-associated bacterial flora of the human colon. J Med Microbiol 1997; 46:85–91.

    PubMed  CAS  Google Scholar 

  58. Croucher SC, Houston AP, Bayliss CE et al. Bacterial populations associated with different regions of the human colon wall. Appl Environ Microbiol 1983; 45:1025–1033.

    PubMed  CAS  Google Scholar 

  59. Hayashi H, Takahashi R, Nishi T et al. Molecular analysis of jejunal, ileal caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 2005; 54:1093–1101.

    Article  PubMed  CAS  Google Scholar 

  60. Green GL, Brostoff J, Hudspith B et al. Molecular characterization of the bacteria adherent to human colorectal mucosa. J Appl Microbiol 2006; 100:460–469.

    Article  PubMed  CAS  Google Scholar 

  61. Swidsinski A, Ladhoff A, Pernthaler A et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 2002; 122:44–54.

    Article  PubMed  Google Scholar 

  62. Wang RF, Beggs ML, Erickson BD et al. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes 2004; 18:223–234.

    Article  PubMed  CAS  Google Scholar 

  63. Zoetendal EG, Akkermans ADL, de Vos WM. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol 1998; 64:3854–3859.

    PubMed  CAS  Google Scholar 

  64. Zoetendal EG, Akkermans ADL, Akkermans van-Vliet WM et al. The host genotype affects the bacterial community in the human gastrointestinal tract. Microbiol Ecol Health Dis 2001; 13:129–134.

    Article  Google Scholar 

  65. Steward JA, Chadwick VS, Murray A. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 2005; 54:1239–1242.

    Article  CAS  Google Scholar 

  66. Hayashi H, Sakamoto M, Benno Y. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol 2002; 46:819–831.

    PubMed  CAS  Google Scholar 

  67. Finegold SM, Sutter VL, Sugihara PT et al. Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am J Clin Nutr 1977; 30:1781–1792.

    PubMed  CAS  Google Scholar 

  68. Moughan PJ, Birtles MJ, Cranwell PD et al. The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. In: Simopoulos AP, ed. Nutritional Triggers for Health and in Disease. Basel, Switzerland: Karger, 1992:40–113.

    Google Scholar 

  69. Stark PL, Lee A. The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J Med Microbiol 1982; 15:189–203.

    Article  PubMed  CAS  Google Scholar 

  70. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999; 69:1035S–1045S.

    PubMed  CAS  Google Scholar 

  71. Hopkins MJ, Macfarlane GT, Furrie E et al. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol Ecol 2005; 54:77–85.

    Article  PubMed  CAS  Google Scholar 

  72. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000; 30:61–67.

    Article  PubMed  CAS  Google Scholar 

  73. Favier CF, Vaughan EE, De Vos WM et al. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 2002; 68:219–226.

    Article  PubMed  CAS  Google Scholar 

  74. Mitsuoka T, Hayakawa K. The fecal flora in man. I. Composition of the fecal flora of various age groups [in German]. Zentbl Bakteriol Orig A 1973; 223:333–342.

    CAS  Google Scholar 

  75. van Tongeren SP, Slaets JP, Harmsen HJ et al. Fecal microbiota composition and frailty. Appl Environ Microbiol 2005; 71:6438–6442.

    Article  PubMed  CAS  Google Scholar 

  76. Ben-Amor K, Heilig H, Smidt H et al. Genetic diversity of viable, injured and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol 2005; 71:4679–4689.

    Article  PubMed  CAS  Google Scholar 

  77. Tannock GW, Munro K, Bibiloni R et al. Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol 2004; 70: 2129–2136.

    Article  PubMed  CAS  Google Scholar 

  78. Manichanh C, Rigottier-Gois L, Bonnaud E et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006; 55:205–211.

    Article  PubMed  CAS  Google Scholar 

  79. Kleerebezem M, Boekhorst J, van Kranenburg R et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 2003; 100:1990–1995.

    Article  PubMed  CAS  Google Scholar 

  80. Paulsen IT, Banerjei L, Myers GS et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003; 299:2071–2074.

    Article  PubMed  CAS  Google Scholar 

  81. Schell MA, Karmirantzou M, Snel B et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 2002; 99:14422–14427.

    Article  PubMed  CAS  Google Scholar 

  82. Xu J, Bjursell MK, Himrod J et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003; 299:2074–2076.

    Article  PubMed  CAS  Google Scholar 

  83. Kuwahara T, Yamashita A, Hirakawa H et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA 2004; 101:14919–14924.

    Article  PubMed  CAS  Google Scholar 

  84. Coyne MJ, Reinap B, Lee MM et al. Human symbionts use a host-like pathway for surface fucosylation. Science 2005; 307:1778–1781.

    Article  PubMed  CAS  Google Scholar 

  85. Gordon JI, Ley RE, Wilson R et al. Extending our view of self: the human gut microbiome initiative (HGMI). (http://www.genome.gov/10002154) 2005.

    Google Scholar 

  86. Satokari R, Kataja K, Soderlund H. Multiplexed quantification of bacterial 16S rRNA by solution hybridization with oligonucleotide probes and affinity capture. Microb Ecol 2005; 50:120–127.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Manson, J.M., Rauch, M., Gilmore, M.S. (2008). The Commensal Microbiology of the Gastrointestinal Tract. In: Huffnagle, G.B., Noverr, M.C. (eds) GI Microbiota and Regulation of the Immune System. Advances in Experimental Medicine and Biology, vol 635. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09550-9_2

Download citation

Publish with us

Policies and ethics