Skip to main content

Intestinal Barrier Function and the Brain-Gut Axis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 817))

Abstract

The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACTH:

Corticotropin

CNS:

Central nervous system

CRF:

Corticotropin-releasing-factor

DSS:

Dextran sulphate sodium

ENS:

Enteric nervous system

GALT:

Gut-associated lymphoid tissue

GCs:

Goblet cells

HNPs:

Human neutrophil peptides

HPA:

Hypothalamic pituitary-adrenal axis

IBD:

Inflammatory bowel disease

IBS:

Irritable bowel syndrome

JAMs:

Junctional adhesion molecules

MAPKs:

Mitogen-activated protein kinases

MARVEL:

MAL and related proteins for vesicle trafficking and membrane link

MLC:

Myosin light chain

MLCK:

Myosin light chain kinase

MUC:

Mucins

NGF:

Nerve growth factor

NLRs:

Nod-like receptors

NOD:

Nucleotide-binding oligomerization domain

PAMP:

Pathogen-associated molecular patterns

POFUT1:

Protein O-fucosyltransferase 1

PRR:

Pattern recognition receptors

RELM:

Resistin-like molecule

TJs:

Tight junctions

TNBS:

Trinitrobenzene sulphonic acid

ZO:

Zonula occludens

References

  1. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809

    CAS  PubMed  Google Scholar 

  2. Kayama H, Nishimura J, Takeda K (2013) Regulation of intestinal homeostasis by innate immune cells. Immune Netw 13(6):227–234

    PubMed Central  PubMed  Google Scholar 

  3. Knoop KA, Miller MJ, Newberry RD (2013) Transepithelial antigen delivery in the small intestine: different paths, different outcomes. Curr Opin Gastroenterol 29(2):112–118

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Wood JD (2007) Neuropathophysiology of functional gastrointestinal disorders. World J Gastroenterol 13(9):1313–1332

    CAS  PubMed  Google Scholar 

  5. Sansonetti PJ (2004) War and peace at mucosal surfaces. Nat Rev Immunol 4(12):953–964

    CAS  PubMed  Google Scholar 

  6. Santos J, Bienenstock J, Perdue MH (2002) Innervation of lymphoid tissue and functional consequences of neurotransmitter and neuropeptide release. In: Brostoff J, Challacombe SJ (eds) Food allergy and intolerance. W.B. Saunders, London, pp 51–67

    Google Scholar 

  7. Hall JE (2011) General principles of gastrointestinal function. Guyton and Hal textbook of medical physiology, 12th edn. Saunders Elsevier, p 755. ISBN: 978-1416045748

    Google Scholar 

  8. Shao L, Serrano D, Mayer L (2001) The role of epithelial cells in immune regulation in the gut. Semin Immunol 13(3):163–176

    CAS  PubMed  Google Scholar 

  9. Yamada T, Sartor RB, Marshall S, Specian RD, Grisham MB (1993) Mucosal injury and inflammation in a model of chronic granulomatous colitis in rats 2. Gastroenterology 104(3):759–771

    CAS  PubMed  Google Scholar 

  10. Gibson P, Rosella O, Nov R, Young G (1995) Colonic epithelium is diffusely abnormal in ulcerative colitis and colorectal cancer. Gut 36:857–863

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Farhadi A, Banan A, Fields J, Keshavarzian A (2003) Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol 18(5):479–497

    PubMed  Google Scholar 

  12. Liévin-Le Moal V, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19(2):315–337

    Google Scholar 

  13. Corfield AP, Carroll D, Myerscough N, Probert CS (2001) Mucins in the gastrointestinal tract in health and disease. Front Biosci 6:D1321–D1357

    CAS  PubMed  Google Scholar 

  14. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, Comerma L, Huang B, Blander JM, Xiong H, Mayer L, Berin C, Augenlicht LH, Velcich A, Cerutti A (2013) Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342(6157):447–453

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Brandtzaeg P (1995) Molecular and cellular aspects of the secretory immunoglobulin system. APMIS 103:1–19

    CAS  PubMed  Google Scholar 

  16. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368

    CAS  PubMed  Google Scholar 

  17. Qin X, Caputo FJ, Xu DZ, Deitch EA (2008) Hydrophobicity of mucosal surface and its relationship to gut barrier function. Shock 29(3):372–376

    PubMed  Google Scholar 

  18. Shirazi T, Longman RJ, Corfield AP, Probert CS (2000) Mucins and inflammatory bowel disease. Postgrad Med J 76(898):473–478

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Allen A, Pearson JP (1993) Mucus glycoproteins of the normal gastrointestinal tract. Eur J Gastroenterol Hepatol 5:193–199

    Google Scholar 

  20. Rhodes JM (1997) Mucins and inflammatory bowel disease. Q J Med 90:79–82

    CAS  Google Scholar 

  21. Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12(5):319–330

    PubMed Central  PubMed  Google Scholar 

  22. Pigny P, Guyonnet-Duperat V, Hill AS, Pratt WS, Galiegue-Zouitina S, d’Hooge MC, Laine A, Van-Seuningen I, Degand P, Gum JR, Kim YS, Swallow DM, Aubert JP, Porchet N (1996) Human mucin genes assigned to 11p15.5: identification and organization of a cluster of genes. Genomics 38(3):340–352

    CAS  PubMed  Google Scholar 

  23. Gum JR Jr, Hicks JW, Toribara NW, Siddiki B, Kim YS (1994) Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem 269(4):2440–2446

    CAS  PubMed  Google Scholar 

  24. Tytgat KM, Büller HA, Opdam FJ, Kim YS, Einerhand AW, Dekker J (1994) Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin. Gastroenterology 107(5):1352–1363

    CAS  PubMed  Google Scholar 

  25. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol 280(5):G922–G929

    CAS  PubMed  Google Scholar 

  27. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, Büller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131(1):117–129

    PubMed  Google Scholar 

  28. Hasnain SZ, Wang H, Ghia JE, Haq N, Deng Y, Velcich A, Grencis RK, Thornton DJ, Khan WI (2010) Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology 138(5):1763–1771

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Zarepour M, Bhullar K, Montero M, Ma C, Huang T, Velcich A, Xia L, Vallance BA (2013) The mucin Muc2 limits pathogen burdens and epithelial barrier dysfunction during Salmonella enterica serovar Typhimurium colitis. Infect Immun 81(10):3672–3683

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Einerhand AW, Renes IB, Makkink MK, van der Sluis M, Buller HA, Dekker J (2002) Role of mucins in inflammatory bowel disease: important lessons from experimental models. Eur J Gastroenterol Hepatol 14:757–765

    CAS  PubMed  Google Scholar 

  31. Larsson JM, Karlsson H, Crespo JG, Johansson ME, Eklund L, Sjövall H, Hansson GC (2011) Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis 17(11):2299–2307

    PubMed  Google Scholar 

  32. Kyo K, Parkes M, Takei Y, Nishimori H, Vyas P, Satsangi J, Simmons J, Nagawa H, Baba S, Jewell D, Muto T, Lathrop GM, Nakamura Y (1999) Association of ulcerative colitis with rare VNTR alleles of the human intestinal mucin gene, MUC3. Hum Mol Genet 8(2):307–311

    CAS  PubMed  Google Scholar 

  33. Kyo K, Muto T, Nagawa H, Lathrop GM, Nakamura Y (2001) Associations of distinct variants of the intestinal mucin gene MUC3A with ulcerative colitis and Crohn’s disease. J Hum Genet 46:5–20

    CAS  PubMed  Google Scholar 

  34. Guilmeau S, Flandez M, Bancroft L, Sellers RS, Tear B, Stanley P, Augenlicht LH (2008) Intestinal deletion of Pofut1 in the mouse inactivates notch signaling and causes enterocolitis. Gastroenterology 135(3):849–860

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Krimi RB, Kotelevets L, Dubuquoy L, Plaisancié P, Walker F, Lehy T, Desreumaux P, Van Seuningen I, Chastre E, Forgue-Lafitte ME, Marie JC (2008) Resistin-like molecule beta regulates intestinal mucous secretion and curtails TNBS-induced colitis in mice. Inflamm Bowel Dis 14(7):931–941

    PubMed  Google Scholar 

  36. Hogan SP, Seidu L, Blanchard C, Groschwitz K, Mishra A, Karow ML, Ahrens R, Artis D, Murphy AJ, Valenzuela DM, Yancopoulos GD, Rothenberg ME (2006) Resistin-like molecule beta regulates innate colonic function: barrier integrity and inflammation susceptibility. J Allergy Clin Immunol 118(1):257–268

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Taupin D, Podolsky DK (2003) Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol 4:721–732

    CAS  PubMed  Google Scholar 

  38. Kindon H, Pothoulakis C, Thim L, Lynch-Devaney K, Podolsky DK (1995) Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology 109(2):516–523

    CAS  PubMed  Google Scholar 

  39. Mashimo H, Wu DC, Podolsky DK, Fishman MC (1996) Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274:262–265

    CAS  PubMed  Google Scholar 

  40. Beck PL, Wong JF, Li Y, Swaminathan S, Xavier RJ, Devaney KL, Podolsky DK (2004) Chemotherapy- and radiotherapy-induced intestinal damage is regulated by intestinal trefoil factor. Gastroenterology 126:796–808

    CAS  PubMed  Google Scholar 

  41. Furuta GT, Turner JR, Taylor CT, Hershberg RM, Comerford K, Narravula S, Podolsky DK, Colgan SP (2001) Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J Exp Med 193:1027–1034

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Menard S, Cerf-Bensussan N, Heyman M (2010) Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 3(3):247–259

    CAS  PubMed  Google Scholar 

  43. Booth C, Potten CS (2000) Gut instincts: thoughts on intestinal epithelial stem cells 1. J Clin Invest 105(11):1493–1499

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Jeon MK, Klaus C, Kaemmerer E, Gassler N (2013) Intestinal barrier: molecular pathways and modifiers. World J Gastrointest Pathophysiol 4(4):94–99

    PubMed Central  PubMed  Google Scholar 

  45. Pott J, Hornef M (2012) Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 13(8):684–698

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Muehlhoefer A, Saubermann LJ, Gu X, Luedtke-Heckenkamp K, Xavier R, Blumberg RS, Podolsky DK, MacDermott RP, Reinecker HC (2000) Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J Immunol 164(6):3368–3376

    CAS  PubMed  Google Scholar 

  47. Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt Rde W, Omori M, Zhou B, Ziegler SF (2007) TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 25:193–219

    CAS  PubMed  Google Scholar 

  48. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141(2):397–408

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Rao R (2009) Occludin phosphorylation in regulation of epithelial tight junctions. Ann N Y Acad Sci 1165:62–68

    CAS  PubMed  Google Scholar 

  50. Dörfel MJ, Huber O (2012) Modulation of tight junction structure and function by kinases and phosphatases targeting occludin. J Biomed Biotechnol 2012:807356

    PubMed Central  PubMed  Google Scholar 

  51. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156(6):1099–1111

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I (2008) Tight junction and polarity interaction in the transporting epithelial phenotype. Biochim Biophys Acta 1778:770–793

    CAS  PubMed  Google Scholar 

  53. Fihn BM, Sjoqvist A, Jodal M (2000) Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of glucose transport. Gastroenterology 119:1029–1036

    CAS  PubMed  Google Scholar 

  54. Schumann M, Günzel D, Buergel N, Richter JF, Troeger H, May C, Fromm A, Sorgenfrei D, Daum S, Bojarski C, Heyman M, Zeitz M, Fromm M, Schulzke JD (2012) Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut 61(2):220–228

    CAS  PubMed  Google Scholar 

  55. Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Escaffit F, Boudreau F, Beaulieu JF (2005) Differential expression of claudin-2 along the human intestine: implication of GATA-4 in the maintenance of claudin-2 in differentiating cells. J Cell Physiol 203(1):15–26

    CAS  PubMed  Google Scholar 

  57. Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113(Pt 13):2363–2374

    CAS  PubMed  Google Scholar 

  58. Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, Williams IR, Koval M, Peatman E, Campbell JA, Dermody TS, Nusrat A, Parkos CA (2007) JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 204(13):3067–3076

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Vetrano S, Rescigno M, Cera MR, Correale C, Rumio C, Doni A, Fantini M, Sturm A, Borroni E, Repici A, Locati M, Malesci A, Dejana E, Danese S (2008) Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 135(1):173–184

    CAS  PubMed  Google Scholar 

  60. Wilcz-Villega EM, McClean S, O’Sullivan MA (2013) Mast cell tryptase reduces junctional adhesion olecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am J Gastroenterol 108(7):1140–1151

    CAS  PubMed  Google Scholar 

  61. Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117(Pt 1):19–29

    CAS  PubMed  Google Scholar 

  62. Tsukita S, Katsuno T, Yamazaki T, Umeda K, Tamura A, Tsukita S (2009) Roles of ZO-1 and ZO-2 in establishment of the belt-like adherens and tight junctions with paracellular permselective barrier function. Ann N Y Acad Sci 1165:44–52

    CAS  PubMed  Google Scholar 

  63. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754

    CAS  PubMed  Google Scholar 

  64. Shen L, Turner JR (2006) Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol 290(4):G577–G582

    CAS  PubMed  Google Scholar 

  65. Utech M, Mennigen R, Bruewer M (2010) Endocytosis and recycling of tight junction proteins in inflammation. J Biomed Biotechnol 2010:484987

    PubMed Central  PubMed  Google Scholar 

  66. Schulzke JD, Bojarski C, Zeissig S, Heller F, Gitter AH, Fromm M (2006) Disrupted barrier function through epithelial cell apoptosis. Ann N Y Acad Sci 1072:288–299

    CAS  PubMed  Google Scholar 

  67. Hopkins AM, Walsh SV, Verkade P, Boquet P, Nusrat A (2003) Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J Cell Sci 116(Pt 4):725–742

    CAS  PubMed  Google Scholar 

  68. Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE (2000) Zonulin, a newly discovered modulator of intestinal permeability, its expression in coeliac disease. Lancet 358:1518–1519

    Google Scholar 

  69. Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, Fasano A (2005) Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A 102:2916–2921

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kandori H, Hirayama K, Takeda M, Doi K (1996) Histochemical, lectin-histochemical and morphometrical characteristics of intestinal goblet cells of germfree and conventional mice. Exp Anim 45:155–160

    CAS  PubMed  Google Scholar 

  71. Lin PW, Simon PO Jr, Gewirtz AT, Neish AS, Ouellette AJ, Madara JL, Lencer WI (2004) Paneth cell cryptdins act in vitro as apical paracrine regulators of the innate inflammatory response. J Biol Chem 279(19):19902–19907

    CAS  PubMed  Google Scholar 

  72. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105:20858–20863

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, Ogunbiyi O, Nuñez G, Keshav S (2003) Crohn’s disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125(1):47–57

    CAS  PubMed  Google Scholar 

  74. Ogura Y, Lala S, Xin W, Smith E, Dowds TA, Chen FF, Zimmermann E, Tretiakova M, Cho JH, Hart J, Greenson JK, Keshav S, Nuñez G (2003) Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis. Gut 52(11):1591–1597

    CAS  PubMed Central  PubMed  Google Scholar 

  75. McElroy SJ, Underwood MA, Sherman MP (2013) Paneth cells and necrotizing enterocolitis: a novel hypothesis for disease pathogenesis. Neonatology 103(1):10–20

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Underwood MA (2012) Paneth cells and necrotizing enterocolitis. Gut Microbes 3(6):562–565

    PubMed Central  PubMed  Google Scholar 

  77. Sternini C, Anselmi L, Rozengurt E (2008) Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 15(1):73–78

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Flemström G, Sjöblom M (2005) Epithelial cells and their neighbors. II. New perspectives on efferent signaling between brain, neuroendocrine cells, and gut epithelial cells. Am J Physiol Gastrointest Liver Physiol 289(3):G377–G380

    PubMed  Google Scholar 

  79. Bienenstock J, McDermott M, Befus D, O’Neill M (1978) A common mucosal immunologic system involving the bronchus, breast and bowel 4. Adv Exp Med Biol 107:53–59

    CAS  PubMed  Google Scholar 

  80. Campbell DJ, Kim CH, Butcher EC (2003) Chemokines in the systemic organization of immunity. Immunol Rev 195:58–71

    CAS  PubMed  Google Scholar 

  81. Gill N, Wlodarska M, Finlay BB (2011) Roadblocks in the gut: barriers to enteric infection. Cell Microbiol 13(5):660–669

    CAS  PubMed  Google Scholar 

  82. Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    PubMed  Google Scholar 

  83. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    CAS  PubMed  Google Scholar 

  84. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    Google Scholar 

  85. Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M (2001) Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167(3):1609–1616

    CAS  PubMed  Google Scholar 

  86. Cario E, Podolsky DK (2000) Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68(12):7010–7017

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885

    Google Scholar 

  88. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, Lee HK, Shen C, Cojocaru G, Shenouda S, Kagnoff M, Eckmann L, Ben-Neriah Y, Raz E (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8(12):1327–1336

    CAS  PubMed  Google Scholar 

  89. Franchi L, McDonald C, Kanneganti TD, Amer A, Núñez G (2006) Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense. J Immunol 177(6):3507–3513

    Google Scholar 

  90. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J, Tedin K, Taha MK, Labigne A, Zähringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587

    CAS  PubMed  Google Scholar 

  91. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278(11):8869–8872

    CAS  PubMed  Google Scholar 

  92. Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4:95–104

    CAS  PubMed  Google Scholar 

  93. Kim JG, Lee SJ, Kagnoff MF (2004) Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by Toll-like receptors. Infect Immun 72:1487–1495

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Geddes K, Rubino S, Streutker C, Cho JH, Magalhaes JG, Le Bourhis L, Selvanantham T, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect Immun 78:5107–5115

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, Kobayashi KS (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 106:15813–15818

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schäffeler E, Schlee M, Herrlinger KR, Stallmach A, Noack F, Fritz P, Schröder JM, Bevins CL, Fellermann K, Stange EF (2004) NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53(11):1658–1664

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Ho S, Pothoulakis C, Koon HW (2013) Antimicrobial peptides and colitis. Curr Pharm Des 19(1):40–47

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21(6):465–499

    CAS  PubMed  Google Scholar 

  99. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    CAS  PubMed  Google Scholar 

  100. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215

    PubMed  Google Scholar 

  101. Cunliffe RN, Kamal M, Rose FR, James PD, Mahida YR (2002) Expression of antimicrobial neutrophil defensins in epithelial cells of active inflammatory bowel disease mucosa. J Clin Pathol 55(4):298–304

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Cunliffe RN (2003) Alpha-defensins in the gastrointestinal tract. Mol Immunol 40:463–467

    CAS  PubMed  Google Scholar 

  103. Ishikawa C, Tanabe H, Maemoto A, Ito T, Watari J, Kono T, Fujiya M, Ashida T, Ayabe T, Kohgo Y (2010) Precursor processing of human defensin-5 is essential to the multiple functions in vitro and in vivo. J Innate Immun 2(1):66–76

    CAS  PubMed  Google Scholar 

  104. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526

    CAS  PubMed  Google Scholar 

  105. Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA, de Jong MF, Winter MG, Winter SE, Wehkamp J, Shen B, Salzman NH, Underwood MA, Tsolis RM, Young GM, Lu W, Lehrer RI, Bäumler AJ, Bevins CL (2012) Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337(6093):477–481

    CAS  PubMed  Google Scholar 

  106. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276(8):5707–5713

    CAS  PubMed  Google Scholar 

  107. Wehkamp J, Fellermann K, Herrlinger KR, Baxmann S, Schmidt K, Schwind B, Duchrow M, Wohlschlager C, Feller AC, Stange EF (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14:745–752

    CAS  PubMed  Google Scholar 

  108. Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML (2004) beta-defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin Exp Immunol 137:379–385

    Google Scholar 

  109. O’Neil DA (2003) Regulation of expression of beta-defensins: endogenous enteric peptide antibiotics. Mol Immunol 40(7):445–450

    PubMed  Google Scholar 

  110. Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 368(1):173–176

    CAS  PubMed  Google Scholar 

  111. Frohm NM, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 67(5):2561–2566

    Google Scholar 

  112. Murakami M, Dorschner RA, Stern LJ, Lin KH, Gallo RL (2005) Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatr Res 57:10–15

    CAS  PubMed  Google Scholar 

  113. Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF (2002) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70(2):953–963

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson G (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7(2):180–185

    CAS  PubMed  Google Scholar 

  115. Kida Y, Shimizu T, Kuwano K (2006) Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1. Mol Immunol 43(12):1972–1981

    CAS  PubMed  Google Scholar 

  116. Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC, Law I, Ho S, Ichikawa R, Zhao D, Xu H, Gallo R, Dempsey P, Cheng G, Targan SR, Pothoulakis C (2011) Cathelicidin signaling via the Toll-like receptor protects against colitis in mice. Gastroenterology 141(5):1852–1863

    CAS  PubMed Central  PubMed  Google Scholar 

  117. He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A, Knowles DM, Rescigno M, Cerutti A (2007) Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26:812–826

    CAS  PubMed  Google Scholar 

  118. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, Cahenzli J, Velykoredko Y, Balmer ML, Endt K, Geuking MB, Curtiss R 3rd, McCoy KD, Macpherson AJ (2010) Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328:1705–1709

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Cicchetti D, Cohen DJ (2006) Developmental psychopathology: developmental neuroscience. Wiley, New York

    Google Scholar 

  120. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    PubMed  Google Scholar 

  121. Gunnar M, Quevedo K (2007) The neurobiology of stress and development. Annu Rev Psychol 58:145–173

    PubMed  Google Scholar 

  122. Saunders PR, Kosecka U, McKay DM, Perdue MH (1994) Acute stressors stimulate ion secretion and increase epithelial permeability in rat intestine. Am J Physiol 267(5 Pt 1):G794–G799

    CAS  PubMed  Google Scholar 

  123. Santos J, Saunders PR, Hanssen NP, Yang PC, Yates D, Groot JA, Perdue MH (1999) Corticotropin-releasing hormone mimics stress-induced colonic epithelial pathophysiology in the rat. Am J Physiol 277(2 Pt 1):G391–G399

    CAS  PubMed  Google Scholar 

  124. Santos J, Benjamin M, Yang PC, Prior T, Perdue MH (2000) Chronic stress impairs rat growth and jejunal epithelial barrier function: role of mast cells. Am J Physiol Gastrointest Liver Physiol 278(6):G847–G854

    CAS  PubMed  Google Scholar 

  125. Vicario M, Guilarte M, Alonso C, Yang P, Martínez C, Ramos L, Lobo B, González A, Guilà M, Pigrau M, Saperas E, Azpiroz F, Santos J (2010) Chronological assessment of mast cell-mediated gut dysfunction and mucosal inflammation in a rat model of chronic psychosocial stress. Brain Behav Immun 24(7):1166–1175

    CAS  PubMed  Google Scholar 

  126. Barclay GR, Turnberg LA (1987) Effect of psychological stress on salt and water transport in the human jejunum. Gastroenterology 93(1):91–97

    CAS  PubMed  Google Scholar 

  127. Barclay GR, Turnberg LA (1988) Effect of cold-induced pain on salt and water transport in the human jejunum. Gastroenterology 94(4):994–998

    CAS  PubMed  Google Scholar 

  128. Santos J, Saperas E, Nogueiras C, Mourelle M, Antolin M, Cadahia A, Malagelada JR (1998) Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology 114(4):640–648

    CAS  PubMed  Google Scholar 

  129. Alonso C, Guilarte M, Vicario M, Ramos L, Ramadan Z, Antolin M, Martinez C, Rezzi S, Saperas E, Kochhar S, Santos J, Malagelada JR (2008) Maladaptive intestinal epithelial responses to life stress may predispose healthy women to gut mucosal inflammation. Gastroenterology 135(1):163–172

    PubMed  Google Scholar 

  130. Meddings JB, Swain MG (2000) Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterology 119(4):1019–1028

    CAS  PubMed  Google Scholar 

  131. Soderholm JD, Perdue MH (2001) Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 280(1):G7–G13

    CAS  PubMed  Google Scholar 

  132. Kiliaan AJ, Saunders PR, Bijlsma PB, Berin MC, Taminiau JA, Groot JA, Perdue MH (1998) Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol 275(5 Pt 1):G1037–G1044

    CAS  PubMed  Google Scholar 

  133. Saunders PR, Santos J, Hanssen NP, Yates D, Groot JA, Perdue MH (2002) Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci 47(1):208–215

    Google Scholar 

  134. Santos J, Perdue MH (2000) Stress and neuroimmune regulation of gut mucosalfunction. Gut 47(Suppl 4):iv49–51; discussion iv52

    Google Scholar 

  135. Ferrier L, Mazelin L, Cenac N, Desreumaux P, Janin A, Emilie D, Colombel JF, Garcia-Villar R, Fioramonti J, Bueno L (2003) Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. Gastroenterology 125(3):795–804

    CAS  PubMed  Google Scholar 

  136. Dunlop SP, Hebden J, Campbell E, Naesdal J, Olbe L, Perkins AC, Spiller RC (2006) Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol 101(6):1288–1294

    PubMed  Google Scholar 

  137. Wallon C, Yang PC, Keita AV, Ericson AC, McKay DM, Sherman PM, Perdue MH, Soderholm JD (2008) Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57(1):50–58

    CAS  PubMed  Google Scholar 

  138. Guilarte M, Santos J, Alonso C, Vicario M, Antolin M, Saperas E, Malagelada JR (2004) Corticotropin-releasing hormone (CRH) triggers jejunal mast cell and eosinophil activation in IBS patients. Gastroenterology 126(Suppl 2):A38 (ref type: abstract)

    Google Scholar 

  139. Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, Salim Rasoel S, Tóth J, Holvoet L, Farré R, Van Oudenhove L, Boeckxstaens G, Verbeke K, Tack J (2013) Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. doi:10.1136/gutjnl-2013-305690 (Epub ahead of print)

  140. Zhou Q, Souba WW, Croce CM, Verne GN (2010) MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 59(6):775–784

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Castagliuolo I, LaMont JT, Qiu B, Fleming SM, Bhaskar KR, Nikulasson ST, Kornetsky C, Pothoulakis C (1996) Acute stress causes mucin release from rat colon: role of corticotropin releasing factor and mast cells. Am J Physiol 271(5 Pt 1):G884–G892

    Google Scholar 

  142. Castagliuolo I, Wershil BK, Karalis K, Pasha A, Nikulasson ST, Pothoulakis C (1998) Colonic mucin release in response to immobilization stress is mast cell dependent. Am J Physiol 274(6 Pt 1):G1094–G1100

    CAS  PubMed  Google Scholar 

  143. Söderholm JD, Yang PC, Ceponis P, Vohra A, Riddell R, Sherman PM, Perdue MH (2002) Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 123(4):1099–1108

    PubMed  Google Scholar 

  144. Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35(2):146–155

    CAS  PubMed  Google Scholar 

  145. Bailey MT, Lubach GR, Coe CL (2004) Prenatal stress alters bacterial colonization of the gut in infant monkeys. J Pediatr Gastroenterol Nutr 38(4):414–421

    PubMed  Google Scholar 

  146. Eutamene H, Bueno L (2007) Role of probiotics in correcting abnormalities of colonic flora induced by stress. Gut 56(11):1495–1497

    Google Scholar 

  147. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56(11):1522–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Spitz JC, Ghandi S, Taveras M, Aoys E, Alverdy JC (1996) Characteristics of the intestinal epithelial barrier during dietary manipulation and glucocorticoid stress. Crit Care Med 24(4):635–641

    CAS  PubMed  Google Scholar 

  149. Velin AK, Ericson AC, Braaf Y, Wallon C, Soderholm JD (2004) Increased antigen and bacterial uptake in follicle associated epithelium induced by chronic psychological stress in rats. Gut 53(4):494–500

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Lizko NN, Silov VM, Syrych GD (1984) Events in he development of dysbacteriosis of the intestines in man under extreme conditions. Nahrung 28(6–7):599–605

    CAS  PubMed  Google Scholar 

  151. Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50(3):203–212

    CAS  PubMed  Google Scholar 

  152. Santos J, Guilarte M, Alonso C, Malagelada JR (2005) Pathogenesis of irritable bowel syndrome: the mast cell connection. Scand J Gastroenterol 40(2):129–140

    PubMed  Google Scholar 

  153. Eutamene H, Theodorou V, Fioramonti J, Bueno L (2003) Acute stress modulates the histamine content of mast cells in the gastrointestinal tract through interleukin-1 and corticotropin-releasing factor release in rats. J Physiol 553(Pt 3):959–966

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Stead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J (1989) Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology 97(3):575–585

    CAS  PubMed  Google Scholar 

  155. Barbara G, Stanghellini V, De GR, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM, Corinaldesi R (2004) Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126(3):693–702

    PubMed  Google Scholar 

  156. Jiang W, Kreis ME, Eastwood C, Kirkup AJ, Humphrey PP, Grundy D (2000) 5-HT(3) and histamine H(1) receptors mediate afferent nerve sensitivity to intestinal anaphylaxis in rats. Gastroenterology 119(5):1267–1275

    CAS  PubMed  Google Scholar 

  157. Barbara G, Wang B, Stanghellini V, De GR, Cremon C, Di NG, Trevisani M, Campi B, Geppetti P, Tonini M, Bunnett NW, Grundy D, Corinaldesi R (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132(1):26–37

    CAS  PubMed  Google Scholar 

  158. Vergnolle N (2005) Clinical relevance of proteinase activated receptors (pars) in the gut10. Gut 54(6):867–874

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Sander LE, Lorentz A, Sellge G, Coeffier M, Neipp M, Veres T, Frieling T, Meier PN, Manns MP, Bischoff SC (2006) Selective expression of histamine receptors H1R, H2R, and H4R, but not H3R, in the human intestinal tract. Gut 55(4):498–504

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM (2003) International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev 55(1):21–26

    CAS  PubMed  Google Scholar 

  161. Kiank C, Tache Y, Larauche M (2010) Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin-releasing factor receptors. Brain Behav Immun 4(1):41–48

    Google Scholar 

  162. la Fleur SE, Wick EC, Idumalla PS, Grady EF, Bhargava A (2005) Role of peripheral corticotropin-releasing factor and urocortin II in intestinal inflammation and motility in terminal ileum. Proc Natl Acad Sci U S A 102(21):7647–7652

    PubMed Central  PubMed  Google Scholar 

  163. Kokkotou E, Torres D, Moss AC, O’Brien M, Grigoriadis DE, Karalis K, Pothoulakis C (2006) Corticotropin-releasing hormone receptor 2-deficient mice have reduced intestinal inflammatory responses. J Immunol 177(5):3355–3361

    CAS  PubMed  Google Scholar 

  164. Moss AC, Anton P, Savidge T, Newman P, Cheifetz AS, Gay J, Paraschos S, Winter MW, Moyer MP, Karalis K, Kokkotou E, Pothoulakis C (2007) Urocortin II mediates pro-inflammatory effects in human colonocytes via corticotropin-releasing hormone receptor 2alpha 1. Gut 56(9):1210–1217

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Saruta M, Takahashi K, Suzuki T, Torii A, Kawakami M, Sasano H (2004) Urocortin 1 in colonic mucosa in patients with ulcerative colitis. J Clin Endocrinol Metab 89(11):5352–5361

    CAS  PubMed  Google Scholar 

  166. Delgado M, Pozo D, Ganea D (2004) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56(2):249–290

    CAS  PubMed  Google Scholar 

  167. Toumi F, Neunlist M, Denis MG, Oreshkova T, Laboisse CL, Galmiche JP, Jarry A (2004) Vasoactive intestinal peptide induces IL-8 production in human colonic epithelial cells via MAP kinase-dependent and PKA-independent pathways. Biochem Biophys Res Commun 317(1):187–191

    CAS  PubMed  Google Scholar 

  168. Cao SG, Wu WC, Han Z, Wang MY (2005) Effects of psychological stress on small intestinal motility and expression of cholecystokinin and vasoactive intestinal polypeptide in plasma and small intestine in mice. World J Gastroenterol 11(5):737–740

    CAS  PubMed  Google Scholar 

  169. Neunlist M, Toumi F, Oreschkova T, Denis M, Leborgne J, Laboisse CL, Galmiche JP, Jarry A (2003) Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am J Physiol Gastrointest Liver Physiol 285(5):G1028–G1036

    CAS  PubMed  Google Scholar 

  170. Koon HW, Pothoulakis C (2006) Immunomodulatory properties of substance P: the gastrointestinal system as a model. Ann N Y Acad Sci 1088:23–40

    Google Scholar 

  171. Wang L, Stanisz AM, Wershil BK, Galli SJ, Perdue MH (1995) Substance P induces ion secretion in mouse small intestine through effects on enteric nerves and mast cells. Am J Physiol 269(1 Pt 1):G85–G92

    CAS  PubMed  Google Scholar 

  172. Zheng PY, Feng BS, Oluwole C, Struiksma S, Chen X, Li P, Tang SG, Yang PC (2009) Psychological stress induces eosinophils to produce corticotrophin releasing hormone in the intestine. Gut 58(11):1473–1479

    CAS  PubMed  Google Scholar 

  173. Barreau F, Cartier C, Ferrier L, Fioramonti J, Bueno L (2004) Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 127(2):524–534

    CAS  PubMed  Google Scholar 

  174. Kobayashi H, Yamataka A, Fujimoto T, Lane GJ, Miyano T (1999) Mast cells and gut nerve development: implications for Hirschsprung’s disease and intestinal neuronal dysplasia. J Pediatr Surg 34(4):543–548

    CAS  PubMed  Google Scholar 

  175. Theodosiou M, Rush RA, Zhou XF, Hu D, Walker JS, Tracey DJ (1999) Hyperalgesia due to nerve damage: role of nerve growth factor. Pain 81(3):245–255

    CAS  PubMed  Google Scholar 

  176. Pearce FL, Thompson HL (1986) Some characteristics of histamine secretion from rat peritoneal mast cells stimulated with nerve growth factor. J Physiol 372:379–393

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Marshall JS, Stead RH, McSharry C, Nielsen L, Bienenstock J (1990) The role of mast cell degranulation products in mast cell hyperplasia. I. Mechanism of action of nerve growth factor. J Immunol 144(5):1886–1892

    CAS  PubMed  Google Scholar 

  178. Barreau F, Cartier C, Leveque M, Ferrier L, Moriez R, Laroute V, Rosztoczy A, Fioramonti J, Bueno L (2007) Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay. J Physiol 580(Pt 1):347–356

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Winston JH, Xu GY, Sarna SK (2010) Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology 138(1):294–304

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA (2006) International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 58:773–781

    CAS  PubMed  Google Scholar 

  181. Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I, Sotiropoulou-Bonikou G, Papavassiliou AG (2003) Oestrogen receptor-β (ERβ) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer 39:1251–1258

    CAS  PubMed  Google Scholar 

  182. Condliffe SB, Doolan CM, Harvey BJ (2001) 17beta-oestradiol acutely regulates Cl- secretion in rat distal colonic epithelium. J Physiol 530(Pt 1):47–54

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Mayol JM, Arbeo-Escolar A, Alarma-Estrany P, Adame-Navarrete Y, Fernandez-Represa JA (2002) Progesterone inhibits chloride transport in human intestinal epithelial cells. World J Surg 26(6):652–656

    PubMed  Google Scholar 

  184. Wada-Hiraike O, Imamov O, Hiraike H, Hultenby K, Schwend T, Omoto Y, Warner M, Gustafsson JA (2006) Role of estrogen receptor beta in colonic epithelium. Proc Natl Acad Sci U S A 103:2959–2964

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Braniste V, Leveque M, Buisson-Brenac C, Bueno L, Fioramonti J, Houdeau E (2009) Oestradiol decreases colonic permeability through oestrogen receptor beta-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J Physiol 587:3317–3328

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Berkes J, Viswanathan VK, Savkovic SD, Hecht G (2003) Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52(3):439–451

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Wu Z, Nybom P, Magnusson KE (2000) Distinct effects of Vibrio cholera haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol 2(1):11–17

    CAS  PubMed  Google Scholar 

  188. Fullner KJ, Lencer WI, Mekalanos JJ (2001) Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect Immun 69:6310–6317

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD, Ketley JM, Kaper JB (1991) Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci U S A 88(12):5242–5246

    Google Scholar 

  190. Fasano A, Fiorentini C, Donelli G, Uzzau S, Kaper JB, Margaretten K, Ding X, Guandalini S, Comstock L, Goldblum SE (1995) Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest 96(2):710–720

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Hecht G, Pothoulakis C, LaMont JT, Madara JL (1988) Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 82(5):1516–1524

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Hecht G, Koutsouris A, Pothoulakis C, LaMont JT, Madara JL (1992) Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology 102(2):416–423

    CAS  PubMed  Google Scholar 

  193. Chen M, Pothoulakis C, LaMont T (2002) Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A. J Biol Chem 277:4247–4254

    CAS  PubMed  Google Scholar 

  194. Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N (1997) Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 272(42):26652–26658

    CAS  PubMed  Google Scholar 

  195. McClane B (1994) Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. Toxicology 87:43–67

    CAS  PubMed  Google Scholar 

  196. Simonovic I, Rosenberg J, Koutsouris A, Hecht G (2000) Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol 2(4):305–315

    CAS  PubMed  Google Scholar 

  197. Yuhan R, Koutsouris A, Savkovic SD, Hecht G (1997) Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113(6):1873–1882

    CAS  PubMed  Google Scholar 

  198. Lyte M (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9(11):e1003726

    PubMed Central  PubMed  Google Scholar 

  199. Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23(3):187–192

    CAS  PubMed  Google Scholar 

  200. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    CAS  PubMed  Google Scholar 

  201. Qin HL, Shen TY, Gao ZG, Fan XB, Hang XM, Jiang YQ, Zhang HZ (2005) Effect of Lactobacillus on the gut microflora and barrier function of the rats with abdominal infection. World J Gastroenterol 11(17):2591–2596

    PubMed  Google Scholar 

  202. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9:804–816

    CAS  PubMed  Google Scholar 

  203. Miyauchi E, O’Callaghan J, Buttó LF, Hurley G, Melgar S, Tanabe S, Shanahan F, Nally K, O’Toole PW (2012) Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol 303(9):G1029–G1041

    CAS  PubMed  Google Scholar 

  204. Patel RM, Myers LS, Kurundkar AR, Maheshwari A, Nusrat A, Lin PW (2012) Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 180(2):626–635

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Lin PW, Nasr TR, Berardinelli AJ, Kumar A, Neish AS (2008) The probiotic Lactobacillus GG may augment intestinal host defense by regulating apoptosis and promoting cytoprotective responses in the developing murine gut. Pediatr Res 64(5):511–516

    PubMed Central  PubMed  Google Scholar 

  206. Ishii Y, Sugimoto S, Izawa N, Sone T, Chiba K, Miyazaki K. Oral administration of Bifidobacterium breve attenuates UV-induced barrier perturbation and oxidative stress in hairless mice skin. Arch Dermatol Res. 2014 Jan 11

    Google Scholar 

  207. Fujita R, Iimuro S, Shinozaki T, Sakamaki K, Uemura Y, Takeuchi A, Matsuyama Y, Ohashi Y (2013) Decreased duration of acute upper respiratory tract infections with daily intake of fermented milk: a multicenter, double-blinded, randomized comparative study in users of day care facilities for the elderly population. Am J Infect Control 41(12):1231–1235

    PubMed  Google Scholar 

  208. Luoto R, Ruuskanen O, Waris M, Kalliomäki M, Salminen S, Isolauri E (2013) Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J Allergy Clin Immunol S0091–6749(13):01307–01309

    Google Scholar 

  209. Dicksved J, Schreiber O, Willing B, Petersson J, Rang S, Phillipson M, Holm L, Roos S (2012) Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction. PLoS One 7(9):e46399

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, Bleich A, Bruder D, Franzke A, Rogler G, Suerbaum S, Buer J, Gunzer F, Westendorf AM (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2(12):e1308

    PubMed Central  PubMed  Google Scholar 

  211. Toumi R, Abdelouhab K, Rafa H, Soufli I, Raissi-Kerboua D, Djeraba Z, Touil-Boukoffa C (2013) Beneficial role of the probiotic mixture Ultrabiotique on maintaining the integrity of intestinal mucosal barrier in DSS-induced experimental colitis. Immunopharmacol Immunotoxicol 35(3):403–409

    PubMed  Google Scholar 

  212. Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, Bruewer M (2009) Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 296(5):G1140–G1149

    CAS  PubMed  Google Scholar 

  213. Persborn M, Gerritsen J, Wallon C, Carlsson A, Akkermans LM, Söderholm JD (2013) The effects of probiotics on barrier function and mucosal pouch microbiota during maintenance treatment for severe pouchitis in patients with ulcerative colitis. Aliment Pharmacol Ther 38(7):772–783

    CAS  PubMed  Google Scholar 

  214. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L, Theodorou V (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37(11):1885–1895

    CAS  PubMed  Google Scholar 

  215. Palomar MM, Maldonado Galdeano C, Perdigón G (2014) Influence of a probiotic Lactobacillus strain on the intestinal ecosystem in a stress model mouse. Brain Behav Immun 35:77–85

    CAS  PubMed  Google Scholar 

  216. Agostini S, Goubern M, Tondereau V, Salvador-Cartier C, Bezirard V, Lévèque M, Keränen H, Theodorou V, Bourdu-Naturel S, Goupil-Feuillerat N, Legrain-Raspaud S, Eutamene H (2012) A marketed fermented dairy product containing Bifidobacterium lactis CNCM I-2494 suppresses gut hypersensitivity and colonic barrier disruption induced by acute stress in rats. Neurogastroenterol Motil 24(4):376–e172

    CAS  PubMed  Google Scholar 

  217. Whelan K, Quigley EM (2013) Probiotics in the management of irritable bowel syndrome and inflammatory bowel disease. Curr Opin Gastroenterol 29(2):184–189

    PubMed  Google Scholar 

  218. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    CAS  PubMed  Google Scholar 

  219. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463

    CAS  PubMed  Google Scholar 

  220. Zolotarevsky Y, Hecht G, Koutsouris A, Gonzalez DE, Quan C, Tom J, Mrsny RJ, Turner JR (2002) A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 123(1):163–172

    CAS  PubMed  Google Scholar 

  221. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166(2):409–419

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M, Schulzke JD (2000) Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 113(Pt 11):2085–2090

    CAS  PubMed  Google Scholar 

  223. Barmeyer C, Amasheh S, Tavalali S, Mankertz J, Zeitz M, Fromm M, Schulzke JD (2004) IL-1beta and TNFalpha regulate sodium absorption in rat distal colon. Biochem Biophys Res Commun 317(2):500–507

    Google Scholar 

  224. Clayburgh DR, Musch MW, Leitges M, Fu YX, Turner JR (2006) Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo. J Clin Invest 116(10):2682–2694

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Zünd G, Madara JL, Dzus AL, Awtrey CS, Colgan SP (1996) Interleukin-4 and interleukin-13 differentially regulate epithelial chloride secretion. J Biol Chem 271(13):7460–7464

    Google Scholar 

  226. Ceponis PJ, Botelho F, Richards CD, McKay DM (2000) Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem 275(37):29132–29137

    Google Scholar 

  227. Madsen KL, Lewis SA, Tavernini MM, Hibbard J, Fedorak RN (1997) Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 113(1):151–159

    CAS  PubMed  Google Scholar 

  228. Madsen KL, Malfair D, Gray D, Doyle JS, Jewell LD, Fedorak RN (1999) Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis 5(4):262–270

    CAS  PubMed  Google Scholar 

  229. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274

    PubMed  Google Scholar 

  230. Blaschitz C, Raffatellu M (2010) Th17 cytokines and the gut mucosal barrier. J Clin Immunol 30(2):196–203

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Al-Sadi R, Boivin M, Ma T (2009) Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci (Landmark Ed) 14:2765–2778

    Google Scholar 

  232. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P, Shea-Donohue T, Tamiz A, Alkan S, Netzel-Arnett S, Antalis T, Vogel SN, Fasano A (2008) Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135(1):194–204

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Wang W, Uzzau S, Goldblum SE, Fasano A (2000) Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 113(Pt 24):4435–4440

    CAS  PubMed  Google Scholar 

  234. Ventura MT, Polimeno L, Amoruso AC, Gatti F, Annoscia E, Marinaro M, Di Leo E, Matino MG, Buquicchio R, Bonini S, Tursi A, Francavilla A (2006) Intestinal permeability in patients with adverse reactions to food. Dig Liver Dis 38(10):732–736

    CAS  PubMed  Google Scholar 

  235. Ozdemir O, Arrey-Mensah A, Sorensen RU (2006) Development of multiple food allergies in children taking tacrolimus after heart and liver transplantation. Pediatr Transplant 10(3):380–383

    PubMed  Google Scholar 

  236. Finnie IA, Dwarakanath AD, Taylor BA, Rhodes JM (1995) Colonic mucin synthesis is increased by sodium butyrate. Gut 36:93–99

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Ma X, Fan PX, Li LS, Qiao SY, Zhang GL, Li DF (2012) Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J Anim Sci 90(Suppl 4):266–268

    PubMed  Google Scholar 

  238. Li N, Lewis P, Samuelson D, Liboni K, Neu J (2004) Glutamine regulates Caco-2 cell tight junction proteins. Am J Physiol Gastrointest Liver Physiol 287(3):G726–G733

    CAS  PubMed  Google Scholar 

  239. Ma TY, Nguyen D, Bui V, Nguyen H, Hoa N (1999) Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol 276:G965–G974

    CAS  PubMed  Google Scholar 

  240. Atkinson KJ, Rao RK (2001) Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions. Am J Physiol 280:G1280–G1288

    CAS  Google Scholar 

  241. Ferrier L, Bérard F, Debrauwer L, Chabo C, Langella P, Buéno L, Fioramonti J (2006) Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol 168(4):1148–1154

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Tong J, Wang Y, Chang B, Zhang D, Liu P, Wang B (2013) Activation of RhoA in alcohol-induced intestinal barrier dysfunction. Inflammation 36(3):750–758

    CAS  PubMed  Google Scholar 

  243. Rendon JL, Li X, Akhtar S, Choudhry MA (2013) Interleukin-22 modulates gut epithelial and immune barrier functions following acute alcohol exposure and burn injury. Shock 39(1):11–18

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Oshima T, Miwa H, Joh T (2008) Aspirin induces gastric epithelial barrier dysfunction by activating p38 MAPK via claudin-7. Am J Physiol Cell Physiol 295(3):C800–C806

    CAS  PubMed  Google Scholar 

  245. Silver K, Leloup L, Freeman LC, Wells A, Lillich JD (2010) Non-steroidal anti-inflammatory drugs inhibit calpain activity and membrane localization of calpain 2 protease. Int J Biochem Cell Biol 42(12):2030–2036

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Tanaka A, Kunikata T, Mizoguchi H, Kato S, Takeuchi K (1999) Dual action of nitric oxide in pathogenesis of indomethacin-induced small intestinal ulceration in rats. J Physiol Pharmacol 50(3):405–417

    CAS  PubMed  Google Scholar 

  247. Vaziri ND, Yuan J, Norris K (2013) Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 37(1):1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, Fasano A (2005) Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A 102(8):2916–2921

    Google Scholar 

  249. Sakisaka S, Kawaguchi T, Taniguchi E, Hanada S, Sasatomi K, Koga H, Harada M, Kimura R, Sata M, Sawada N, Mori M, Todo S, Kurohiji T (2001) Alterations in tight junctions differ between primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 33(6):1460–1468

    CAS  PubMed  Google Scholar 

  250. Pijls KE, Jonkers DM, Elamin EE, Masclee AA, Koek GH (2013) Intestinal epithelial barrier function in liver cirrhosis: an extensive review of the literature. Liver Int 33(10):1457–1469

    PubMed  Google Scholar 

  251. Rao RK, Seth A, Sheth P (2004) Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 286(6):G881–G884

    CAS  PubMed  Google Scholar 

  252. Rebuffat SA, Kammoun-Krichen M, Charfeddine I, Ayadi H, Bougacha-Elleuch N, Peraldi-Roux S (2013) IL-1β and TSH disturb thyroid epithelium integrity in autoimmune thyroid diseases. Immunobiology 218(3):285–291

    CAS  PubMed  Google Scholar 

  253. Peng SN, Zeng HH, Fu AX, Chen XW, Zhu QX (2013) Effects of rhein on intestinal epithelial tight junction in IgA nephropathy. World J Gastroenterol 19(26):4137–4145

    Google Scholar 

  254. Li Y, Guo M, Shen J, Zheng L, Wang J, Wang P, Li J (2014) Limited Fluid Resuscitation Attenuates lung and intestine injury caused by hemorrhagic shock in rats. J Invest Surg 27:81–87 (Epub 2013 Oct 2)

    Google Scholar 

  255. Fishman JE, Levy G, Alli V, Sheth S, Lu Q, Deitch EA (2013) Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure. Am J Physiol Gastrointest Liver Physiol 304(1):G57–G63

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Doucet D, Badami C, Palange D, Bonitz RP, Lu Q, Xu DZ, Kannan KB, Colorado I, Feinman R, Deitch EA (2010) Estrogen receptor hormone agonists limit trauma hemorrhage shock-induced gut and lung injury in rats. PLoS One 5(2):e9421

    Google Scholar 

  257. Feinman R, Deitch EA, Watkins AC, Abungu B, Colorado I, Kannan KB, Sheth SU, Caputo FJ, Lu Q, Ramanathan M, Attan S, Badami CD, Doucet D, Barlos D, Bosch-Marce M, Semenza GL, Xu DZ (2010) HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 299(4):G833–G843

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Spindler-Vesel A, Wraber B, Vovk I, Kompan L (2006) Intestinal permeability and cytokine inflammatory response in multiply injured patients. J Interferon Cytokine Res 26(10):771–776

    CAS  PubMed  Google Scholar 

  259. Chen C, Wang P, Su Q, Wang S, Wang F (2012) Myosin light chain kinase mediates intestinal barrier disruption following burn injury. PLoS One 7(4):e34946

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Costantini TW, Peterson CY, Kroll L, Loomis WH, Eliceiri BP, Baird A, Bansal V, Coimbra R (2009) Role of p38 MAPK in burn-induced intestinal barrier breakdown. J Surg Res 156(1):64–69

    CAS  PubMed  Google Scholar 

  261. Peterson CY, Costantini TW, Loomis WH, Putnam JG, Wolf P, Bansal V, Eliceiri BP, Baird A, Coimbra R (2010) Toll-like receptor-4 mediates intestinal barrier breakdown after thermal injury. Surg Infect (Larchmt) 11(2):137–144

    Google Scholar 

  262. Mertz H, Morgan V, Tanner G, Pickens D, Price R, Shyr Y, Kessler R (2000) Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology 118(5):842–848

    CAS  PubMed  Google Scholar 

  263. Drossman DA, Ringel Y, Vogt BA, Leserman J, Lin W, Smith JK, Whitehead W (2003) Alterations of brain activity associated with resolution of emotional distress and pain in a case of severe irritable bowel syndrome. Gastroenterology 124(3):754–761

    PubMed  Google Scholar 

  264. Barreau F, Ferrier L, Fioramonti J, Bueno L (2007) New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 62(3):240–245

    PubMed  Google Scholar 

  265. O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF, Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65(3):263–267

    PubMed  Google Scholar 

  266. Klooker TK, Braak B, Painter RC, de Rooij SR, van Elburg RM, van den Wijngaard RM, Roseboom TJ, Boeckxstaens GE (2009) Exposure to severe wartime conditions in early life is associated with an increased risk of irritable bowel syndrome: a population-based cohort study. Am J Gastroenterol 104(9):2250–2256

    PubMed  Google Scholar 

  267. Koloski NA, Talley NJ, Boyce PM (2005) A history of abuse in community subjects with irritable bowel syndrome and functional dyspepsia: the role of other psychosocial variables. Digestion 72(2–3):86–96

    PubMed  Google Scholar 

  268. Murray CD, Flynn J, Ratcliffe L, Jacyna MR, Kamm MA, Emmanuel AV (2004) Effect of acute physical and psychological stress on gut autonomic innervation in irritable bowel syndrome. Gastroenterology 127(6):1695–1703

    PubMed  Google Scholar 

  269. Kellow JE, Langeluddecke PM, Eckersley GM, Jones MP, Tennant CC (1992) Effects of acute psychologic stress on small-intestinal motility in health and the irritable bowel syndrome. Scand J Gastroenterol 27(1):53–58

    CAS  PubMed  Google Scholar 

  270. Vanheel H, Vicario M, Vanuytsel T, Van Oudenhove L, Martinez C, Keita AV, Pardon N, Santos J, Söderholm JD, Tack J, Farré R (2014) Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut 63:262–271 (Epub 2013 Mar 8)

    Google Scholar 

  271. Pike BL, Porter CK, Sorrell TJ, Riddle MS (2013) Acute gastroenteritis and the risk of functional dyspepsia: a systematic review and meta-analysis. Am J Gastroenterol 108(10):1558–1563

    PubMed  Google Scholar 

  272. Van Oudenhove L, Aziz Q (2013) The role of psychosocial factors and psychiatric disorders in functional dyspepsia. Nat Rev Gastroenterol Hepatol 10(3):158–167

    PubMed  Google Scholar 

  273. Van Oudenhove L, Vandenberghe J, Vos R, Fischler B, Demyttenaere K, Tack J (2011) Abuse history, depression, and somatization are associated with gastric sensitivity and gastric emptying in functional dyspepsia. Psychosom Med 73(8):648–655

    PubMed  Google Scholar 

  274. Stout C, Snyder RL (1969) Ulcerative colitis-like lesion in Siamang gibbons. Gastroenterology 57(3):256–261

    Google Scholar 

  275. Barreau F, Ferrier L, Fioramonti J, Bueno L (2004) Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut 53(4):501–506

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Collins SM, McHugh K, Jacobson K, Khan I, Riddell R, Murase K, Weingarten HP (1996) Previous inflammation alters the response of the rat colon to stress. Gastroenterology 111(6):1509–1515

    CAS  PubMed  Google Scholar 

  277. Qiu BS, Vallance BA, Blennerhassett PA, Collins SM (1999) The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nat Med 5(10):1178–1182

    CAS  PubMed  Google Scholar 

  278. Bitton A, Sewitch MJ, Peppercorn MA, deB Edwardes MD, Shah S, Ransil B, Locke SE (2003) Psychosocial determinants of relapse in ulcerative colitis: a longitudinal study. Am J Gastroenterol 98(10):2203–2208

    Google Scholar 

  279. Levenstein S, Prantera C, Varvo V, Scribano ML, Andreoli A, Luzi C, Arca M, Berto E, Milite G, Marcheggiano A (2000) Stress and exacerbation in ulcerative colitis: a prospective study of patients enrolled in remission. Am J Gastroenterol 95(5):1213–1220

    CAS  PubMed  Google Scholar 

  280. Buhner S, Buning C, Genschel J, Kling K, Herrmann D, Dignass A, Kuechler I, Krueger S, Schmidt HH, Lochs H (2006) Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut 55(3):342–347

    CAS  PubMed Central  PubMed  Google Scholar 

  281. D’Inca R, Annese V, Di Leo V, Latiano A, Quaino V, Abazia C, Vettorato MG, Sturniolo GC (2006) Increased intestinal permeability and NOD2 variants in familial and sporadic Crohn’s disease. Aliment Pharmacol Ther 23(10):1455–1461

    Google Scholar 

  282. Peeters M, Geypens B, Claus D, Nevens H, Ghoos Y, Verbeke G, Baert F, Vermeire S, Vlietinck R, Rutgeerts P (1997) Clustering of increased small intestinal permeability in families with Crohn’s disease. Gastroenterology 113(3):802–807

    CAS  PubMed  Google Scholar 

  283. D’Inca R, Di Leo V, Corrao G, Martines D, D’Odorico A, Mestriner C, Venturi C, Longo G, Sturniolo GC (1999) Intestinal permeability test as a predictor of clinical course in Crohn’s disease. Am J Gastroenterol 94(10):2956–2960

    Google Scholar 

  284. Jorgensen J, Ranlov PJ, Bjerrum PJ, Diemer H, Bisgaard K, Elsborg L (2001) Is an increased intestinal permeability a valid predictor of relapse in Crohn disease? Scand J Gastroenterol 36(5):521–527

    CAS  PubMed  Google Scholar 

  285. Langhorst J, Cobelens PM, Kavelaars A, Heijnen CJ, Benson S, Rifaie N, Dobos GJ, Schedlowski M, Elsenbruch S (2007) Stress-related peripheral neuroendocrine-immune interactions in women with ulcerative colitis. Psychoneuroendocrinology 32(8–10):1086–1096

    CAS  PubMed  Google Scholar 

  286. Bekkering P, Jafri I, van Overveld FJ, Rijkers GT (2013) The intricate association between gut microbiota and development of Type 1, Type 2 and Type 3 diabetes. Expert Rev Clin Immunol 9(11):1031–1041

    CAS  PubMed  Google Scholar 

  287. Summa KC, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, Tang Y, Vitaterna MH, Song S, Turek FW, Keshavarzian A (2013) Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation. PLoS One 8(6):e67102

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Fetissov SO, Déchelotte P (2011) The new link between gut-brain axis and neuropsychiatric disorders. Curr Opin Clin Nutr Metab Care 14(5):477–482

    PubMed  Google Scholar 

  289. Heberling CA, Dhurjati PS, Sasser M (2013) Hypothesis for a systems connectivity model of autism spectrum disorder pathogenesis: links to gut bacteria, oxidative stress, and intestinal permeability. Med Hypotheses 80(3):264–270

    PubMed  Google Scholar 

  290. Maes M, Coucke F, Leunis JC (2007) Normalization of the increased translocation of endotoxin from gram negative enterobacteria (leaky gut) is accompanied by a remission of chronic fatigue syndrome. Neuro Endocrinol Lett 28(6):739–744

    CAS  PubMed  Google Scholar 

  291. Goebel A, Buhner S, Schedel R, Lochs H, Sprotte G (2008) Altered intestinal permeability in patients with primary fibromyalgia and in patients with complex regional pain syndrome. Rheumatology (Oxford) 47(8):1223–1227

    CAS  Google Scholar 

  292. Hadjiyanni I, Li KK, Drucker DJ (2009) Glucagon-like peptide-2 reduces intestinal permeability but does not modify the onset of type 1 diabetes in the nonobese diabetic mouse. Endocrinology 150(2):592–599

    CAS  PubMed  Google Scholar 

  293. Moran GW, O’Neill C, McLaughlin JT (2012) GLP-2 enhances barrier formation and attenuates TNFα-induced changes in a Caco-2 cell model of the intestinal barrier. Regul Pept 178(1–3):95–101

    CAS  PubMed  Google Scholar 

  294. Tang ZF, Ling YB, Lin N, Hao Z, Xu RY (2007) Glutamine and recombinant human growth hormone protect intestinal barrier function following portal hypertension surgery. World J Gastroenterol 13(15):2223–2228

    CAS  PubMed  Google Scholar 

  295. Yi C, Cao Y, Wang SR, Xu YZ, Huang H, Cui YX, Huang Y (2007) Beneficial effect of recombinant human growth hormone on the intestinal mucosa barrier of septic rats. Braz J Med Biol Res 40(1):41–48

    CAS  PubMed  Google Scholar 

  296. Lorenzo-Zúñiga V, Rodríguez-Ortigosa CM, Bartolí R, Martínez-Chantar ML, Martínez-Peralta L, Pardo A, Ojanguren I, Quiroga J, Planas R, Prieto J (2006) Insulin-like growth factor I improves intestinal barrier function in cirrhotic rats. Gut 55(9):1306–1312

    PubMed Central  PubMed  Google Scholar 

  297. Dong CX, Zhao W, Solomon C, Rowland KJ, Ackerley C, Robine S, Holzenberger M, Gonska T, Brubaker PL (2014) The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function. Endocrinology 155:370–379 (Epub 2013 Nov 21)

    Google Scholar 

  298. Bansal V, Ryu SY, Blow C, Costantini T, Loomis W, Eliceiri B, Baird A, Wolf P, Coimbra R (2010) The hormone ghrelin prevents traumatic brain injury induced intestinal dysfunction. J Neurotrauma 27(12):2255–2260

    PubMed Central  PubMed  Google Scholar 

  299. Bettenworth D, Buyse M, Böhm M, Mennigen R, Czorniak I, Kannengiesser K, Brzoska T, Luger TA, Kucharzik T, Domschke W, Maaser C, Lügering A (2011) The tripeptide KdPT protects from intestinal inflammation and maintains intestinal barrier function. Am J Pathol 179(3):1230–1242

    CAS  PubMed Central  PubMed  Google Scholar 

  300. Hamada K, Shitara Y, Sekine S, Horie T (2010) Zonula Occludens-1 alterations and enhanced intestinal permeability in methotrexate-treated rats. Cancer Chemother Pharmacol 66(6):1031–1038

    CAS  PubMed  Google Scholar 

  301. Jung S, Fehr S, Harder-d’Heureuse J, Wiedenmann B, Dignass AU (2001) Corticosteroids impair intestinal epithelial wound repair mechanisms in vitro. Scand J Gastroenterol 36(9):963–970

    CAS  PubMed  Google Scholar 

  302. Hopkins AM, McDonnell C, Breslin NP, O’Morain CA, Baird AW (2002) Omeprazole increases permeability across isolated rat gastric mucosa pre-treated with an acid secretagogue. J Pharm Pharmacol 54(3):341–347

    CAS  PubMed  Google Scholar 

  303. Yang J, Liu KX, Qu JM, Wang XD (2013) The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur J Pharmacol 714(1–3):120–124

    CAS  PubMed  Google Scholar 

  304. Lee SE, Choi Y, Kim SE, Noh EB, Kim SC (2013) Differential effects of topical corticosteroid and calcineurin inhibitor on the epidermal tight junction. Exp Dermatol 22(1):59–61

    CAS  PubMed  Google Scholar 

  305. Gabe SM, Bjarnason I, Tolou-Ghamari Z, Tredger JM, Johnson PG, Barclay GR, Williams R, Silk DB (1998) The effect of tacrolimus (FK506) on intestinal barrier function and cellular energy production in humans. Gastroenterology 115(1):67–74

    CAS  PubMed  Google Scholar 

  306. Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J et al (2008) Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 294:G208–G216

    CAS  PubMed  Google Scholar 

  307. Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB (2007) The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 26:757–766

    CAS  PubMed  Google Scholar 

  308. Kelly CP, Green PH, Murray JA, Dimarino A, Colatrella A, Leffler DA, Alexander T, Arsenescu R, Leon F, Jiang JG, Arterburn LA, Paterson BM, Fedorak RN, Larazotide Acetate Celiac Disease Study Group (2013) Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther 37(2):252–262

    CAS  PubMed  Google Scholar 

  309. Gopalakrishnan S, Tripathi A, Tamiz AP, Alkan SS, Pandey NB (2012) Larazotide acetate promotes tight junction assembly in epithelial cells. Peptides 35(1):95–101

    CAS  PubMed  Google Scholar 

  310. Gopalakrishnan S, Durai M, Kitchens K, Tamiz AP, Somerville R, Ginski M, Paterson BM, Murray JA, Verdu EF, Alkan SS, Pandey NB (2012) Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides 35(1):86–94

    CAS  PubMed  Google Scholar 

  311. Suenaert P, Bulteel V, Lemmens L, Noman M, Geypens B, Van Assche G et al (2002) Anti-tumor necrosis factor treatment restores the gut barrier in Crohn’s disease. Am J Gastroenterol 97:2000–2004

    CAS  PubMed  Google Scholar 

  312. Bode L, Salvestrini C, Park PW, Li JP, Esko JD, Yamaguchi Y et al (2008) Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest 118:229–238

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by the Fondo de Investigación Sanitaria and Ciberehd, Instituto Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Ciencia e Innovación (PI12/00314, Alonso, C.; CM08/00229, Lobo, B; CM10/00155, Pigrau, M; CP10/00502, PI13/00935, Vicario, M; PI11/00716 & CB06/04/0021, Santos, J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Alonso, C., Vicario, M., Pigrau, M., Lobo, B., Santos, J. (2014). Intestinal Barrier Function and the Brain-Gut Axis. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_4

Download citation

Publish with us

Policies and ethics