Skip to main content

The Point of No Return: Mitochondria, Caspases, and the Commitment to Cell Death

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 24))

Abstract

It is standard procedure in many modern societies to attempt to establish an accurate time of death whenever a person dies. If the individual is under observation at the time, then the decision of exactly when death occurs is based on a set of physiological criteria. Alternatively, if the death was unobserved, then time of death is approximated using forensic clues. In either case we have a fair idea of what it means to die, and when it occurs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas AK (1996) Die and let live: eliminating dangerous lymphocytes. Cell 84:655–657

    Article  PubMed  CAS  Google Scholar 

  • Amarante-Mendes GP, Finucane DM, Martin SJ, Cotter TG, Salvesen GS, Green DR (1998a) Anti-apoptotic oncogenes prevent caspase-dependent and -independent commitment for cell death. Cell Death Differ 5:298–306

    Article  PubMed  CAS  Google Scholar 

  • Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE, Witte ON, Green DR (1998b) Bcl-2 independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up- regulation of Bcl-xL. Oncogene 16:1383–1390

    Article  PubMed  CAS  Google Scholar 

  • Ameisen JC, Idziorek T, Billaut-Mulot O, Loyens M, Tissier JP, Potentier A, Ouiassi A (1995) Apoptosis in a unicellular eukaryote (Trypanosoma cruzi). Implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell Death Differ 2:285–300

    PubMed  CAS  Google Scholar 

  • Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis: the role of the endonuclease. Am J Pathol 136:593–608

    PubMed  CAS  Google Scholar 

  • Blackstone NW (1995) A units-of-evolution perspective on the endosymbiont theory of the origin of the mitochondrion. Evolution 49:785–796

    Article  CAS  Google Scholar 

  • Bortner CD, Oldenburg NBE, Cidlowski JA (1995) The role of DNA fragmentation in apoptosis. Trends Cell Biol 5:21–26

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49

    Article  PubMed  CAS  Google Scholar 

  • Brunet CL, Gunby RH, Benson RSP, Hickman JA, Watson AJ, Brady G (1998) Commitment to clonogenic BCL-2-regulated cell death in a human lymphoid cell line is unaffected by caspase inactivation. Cell Death Differ 5:107–115

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Nordstrom W, Gish B, Abrams JM (1996) grim, a novel cell death gene in Drosophila. Genes Dev 10:1773–1782

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan A, Dixit V (1996) The cell-death machine. Curr Biol 6:555–562

    Article  PubMed  CAS  Google Scholar 

  • Clem RJ, Hardwick JM, Miller LK (1996) Anti-apoptotic genes of baculoviruses. Cell Death Differ 3:9–16

    PubMed  CAS  Google Scholar 

  • Decaudin D, Geley S, Hirsch T, Castedo M, Marchetti P, Macho A, Kofler R, Kroemer G (1997) Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 57:62–67

    PubMed  CAS  Google Scholar 

  • Devereaux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell- death proteases. Nature 388:300–304

    Article  CAS  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    Article  PubMed  CAS  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    PubMed  CAS  Google Scholar 

  • Fernandes-Alnemri T, Litwack G, Alnemri E (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein ced-3 and mammalian interleukin-IB- converting enzyme. J Biol Chem 269:30761–30764

    PubMed  CAS  Google Scholar 

  • Finucane DM, Amarante-Mendes GP, Cotter TG, Green DR (1998) Collapse of the inner mitochondrial transmembrane potential is not a universal requirement for apoptosis. submitted)

    Google Scholar 

  • Green DR, Martin SJ (1995) The killer and the executioner: how apoptosis controls malignancy. Curr Opin Immunol 7:694–703

    Article  PubMed  CAS  Google Scholar 

  • Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9:1694–1708

    Article  PubMed  CAS  Google Scholar 

  • Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus p35 prevents cell death in Drosophilia. Development 120:2121–2129

    PubMed  CAS  Google Scholar 

  • Henkart PA (1996) ICE family proteases: mediators of all apoptotic cell death? Immunity 4:195–201

    Article  PubMed  CAS  Google Scholar 

  • Kamens J, Paskind M, Hugunin M, Talanian RV, Allen H, Banach D, Bump N, Hackett M, Johnston CG, Li P, et al. (1995) Identification and characterization of ICH-2, a novel member of the interleukin-1 beta-converting enzyme family of cysteine proteases. J Biol Chem 270:15250–15256

    Article  PubMed  CAS  Google Scholar 

  • Kluck RM, Bossy Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Krajewska M, Wang H-G, Krajewski S, Zapata JM, Shabaik A, Gascoyne R, Reed JC (1997) Immunohistochemical analysis of in vivo patterns of expression of CPP32 (caspase-3), a cell death protease. Cancer Res 57:1605–1613

    PubMed  CAS  Google Scholar 

  • Krippner A, Matsuno-Yagi A, Gottlieb RA, Babior BM (1996) Loss of function of cytochrome c in Jurkat cells undergoing fas-mediated apoptosis. J Biol Chem 271:21629–21636

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G (1997) Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 4:443–456

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C-Y, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decrease d apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Lavin MF (1996) The ICE family of cysteine proteases as effector of cell death. Cell Death Differ 3:255–267

    PubMed  CAS  Google Scholar 

  • Kyewski BA (1986) Thymic nurse cells: possible sites of T cell selection. Immunol Today 7:374

    Article  Google Scholar 

  • Lagasse E, Weissman IL (1994) Bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 179:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  • Longthorne VL, Williams GT (1997) Caspase activity is required for commitment to Fas- mediated apoptosis. EMBO J 16:3805–3812

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Reutelingsperger CPM, McGahon AJ, Rader J, van Schie RCAA, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1–12

    Article  Google Scholar 

  • McCarthy NJ, Whyte MKB, Gilbert CS, Evan GI (1997) Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136:215–227

    Article  PubMed  CAS  Google Scholar 

  • McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG (1994) BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83:1179–1187

    PubMed  CAS  Google Scholar 

  • Mogil RJ, Shi Y, Bissonnette RP, Bromley P, Yamaguchi I, Green DR (1994) The role of DNA fragmentation in T cell activation-induced apoptosis in vivo and in vitro. J Immunol 152:1674–1683

    PubMed  CAS  Google Scholar 

  • Moreira ME, Del Portillo HA, Milder RV, Balanco JM, Barcinski MA (1996) Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 167:305–313

    Article  PubMed  CAS  Google Scholar 

  • Mpoke S, Wolfe J (1996) DNA digestion and chromatin condensation during nuclear death in Tetrahymena. Exp Cell Res 225:357–365

    Article  PubMed  CAS  Google Scholar 

  • Munday NA, Vaillancourt JP, Ali A, Casano FJ, Miller DK, Molineaux SM, Yamin TT, Yu VL, Nicholson DW (1995) Molecular cloning and pro-apoptotic activity of ICErelll and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J Biol Chem 270:15870–15876

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Salvesen GS, Dixit VM (1997) FLICE induced apoptosis in a cell-free system. J Biol Chem 272:2952–2956

    Article  PubMed  CAS  Google Scholar 

  • Orth K, O’Rourke K, Salvesen GS, Dixit VM (1996) Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J Biol Chem 271:20977–20980

    Article  PubMed  CAS  Google Scholar 

  • Richter C (1993) Pro-oxidants and mitochondrial Ca2+: their relationship to apoptosis and oncogenesis. FEBS Lett 325:104–107

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Fadok V, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131–136

    Article  PubMed  CAS  Google Scholar 

  • Sellins KS, Cohen JJ (1987) Gene induction by γ-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    PubMed  CAS  Google Scholar 

  • Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Zamzami N, Castedo M, Daugas E, Wang H-G, Geley S, Fassy F, Reed JC, Kroemer G (1997) The central executioner of apoptosis: multiple connections between protease activa tion and mitochondria in Fas/APO-l/CD95- and ceramide-induced apoptosis. J Exp Med 186:25–37

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H, Ketelsen U (1980) Thymic nurse cells: la-bearing epithelium involved in T- lymphocyte differentiation. Nature 283:402

    Article  PubMed  CAS  Google Scholar 

  • Welburn SC, Dale C, Ellis D, Beecroft R, Pearson TW (1996) Apoptosis in procyclic Trypanosoma brucei rhodesiense in vitro. Cell Death Differ 3:229–236

    PubMed  CAS  Google Scholar 

  • White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683

    Article  PubMed  CAS  Google Scholar 

  • White K, Tahaoglu E, Steller H (1996) Cell killing by the Drosophila gene reaper. Science 271:805–807

    Article  PubMed  CAS  Google Scholar 

  • Wood AC, Waters CM, Garner A, Hickman JA (1994) Changes in c-myc expression and the kinetics of dexamethasone-induced programmed cell death (apoptosis) in human lymphoid leukaemia cells. Br J Cancer 69:663–669

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142:67–77

    Article  PubMed  CAS  Google Scholar 

  • Xiang J, Chao DT, Korsmeyer SJ (1996) BAX-induced cell death may not require interleukin lβ- converting enzyme-like proteases. Proc Natl Acad Sci USA 93:14559–14563

    Article  PubMed  CAS  Google Scholar 

  • Xue D, Horvitz HR (1995) Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377:248–251

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Zakeri Z, Bursch W, Tenniswood M, Lockshin RA (1995) Cell death: programmed, apoptosis, necrosis, or other? Cell Death Differ 2:87–96

    PubMed  CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G (1995a) Reduc tion in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181:1661–1672

    Article  PubMed  CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G (1995b) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  Google Scholar 

  • Zhou Q, Snipas S, Orth K, Muzio M, Dixit VM, Salvesen GS (1997) Target protease specificity of the viral serpin CrmA. J Biol Chem 272:7797–7800

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Green, D.R., Amarante-Mendes, G.P. (1998). The Point of No Return: Mitochondria, Caspases, and the Commitment to Cell Death. In: Kumar, S. (eds) Apoptosis: Mechanisms and Role in Disease. Results and Problems in Cell Differentiation, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69185-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69185-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21625-5

  • Online ISBN: 978-3-540-69185-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics