Skip to main content
Log in

The stem cells of the liver — a selective review

  • Guest Editorial
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Bei Erweiterung des Wissens macht sich von Zeit zu Zeit eine Umordnung nötig; sie geschieht meistens nach neueren Maximen, bleibt aber immer provisorisch. J. W. v. Goethe

[With the widening of knowledge a rearrangement becomes necessary from time to time; it mostly follows the newer maxims, but always remains provisional.]

Summary

The current status of the much-debated question of the still-hypothetical stem cells of the liver is reviewed, with an emphasis on their role in hepatocarcino-genesis. The widely held view of the primacy of the hepatocyte, notably of the mononuclear diploid type, in this process — the “hepatocytic theory” — has been compared with variants of the “stem cell hypothesis” based on the “non-parenchymal epithelial cells” of the liver — the “oval” or biliary ductular cells, the “nondescript periductular” cells and the “primitive” bipotential epithelial cells. An attempt has been made to concentrate mainly on the more recent publications, in an effort to balance the conflicting opinions expressed by comparing results obtained by the newer procedures currently in use. Despite some interesting and relevant findings it appears that the evidence in favour of the stem-cell hypothesis is still circumstantial and that the hepatocytic theory has not been invalidated. Presumably the question of the hepatic stem cells will be answered when the riddle of hepatocarcino-genesis has been solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

2-AAF:

2-acetylaminofluorene

DEN:

diethylnitrosamine

References

  1. Alpini G, Lenzi R, Zhai W-R, Liu MH, Slott PA, Paronetto F, Tavoloni N (1989) Isolation of a nonparenchymal liver cell fraction enriched in cells with biliary epithelial phenotypes. Gastroenterology 97:1248–1260

    PubMed  Google Scholar 

  2. Altmann H-W (1978) Pathology of human liver tumors. In: Remmer H, Bannasch P, Bolt HM, Popper H (eds) Falk symposium 25. MTP, Lancaster, pp 53–71

    Google Scholar 

  3. Altmann H-W (1981) Zellularpathologische Aspekte der Lebererkrankungen. In: Leber: Morphologie, Pathophysiologie, Klinik. Thieme, Stuttgart, pp 19–37

    Google Scholar 

  4. Altmann H-W (1983) Neubildungen der Leber: Pathologie und Pathogenese. In: Häring R (ed) Chirurgie der Leber. Edition Medizin, Weinheim, pp 167–187

    Google Scholar 

  5. Altmann H-W (1984) Neubildungen der Leber. Verh Dtsch Krebsges 5:423–435

    Google Scholar 

  6. Altmann H-W (1984) Cellular pathology of liver disease. Annual of Medical School, Aristotelian University of Thessaloniki, Greece, vol 14, pp 13–33

    Google Scholar 

  7. Altmann H-W (1987) Morphologische Aspekte der hepatischen Neubildungen des Menschen. In: Tittor W, Schwalbach G (eds) Lebertumoren. Ursache, Verlauf und Therapie. Demeter, Gräfeling, pp 87–106

    Google Scholar 

  8. Altmann H-W (1990) Onkozytäre Hepatozyten. Pathologe 11:137–142

    PubMed  Google Scholar 

  9. Altmann H-W (1991) Epithelial and mixed hepatoblastoma in the adult: report of two cases, and general considerations (in press)

  10. Andervont HB, Dunn TB (1955) Transplantation of hepatomas in mice. J Natl Cancer Inst 15:1513–1524

    PubMed  Google Scholar 

  11. Arber N, Zajicek G (1990) Streaming liver: VI. Streaming intra-hepatic bile ducts. Liver 10:205–208

    PubMed  Google Scholar 

  12. Aterman K (1986) The parasinusoidal cells of the liver: a historical account. Histochem J 18:279–305

    PubMed  Google Scholar 

  13. Aterman K (1986) The nomenclature of the parasinusoidal cells. In: Kirn A, Knook DL, Wisse E (eds) Cells of the hepatic sinusoids, vol 1. Kupffer Cell Foundation, Rijswijk, pp 209–213

    Google Scholar 

  14. Aterman K (1987) Localized hepatocarcinogenesis: the response of the liver and of the kidneys to implanted carcinogens. J Cancer Res Clin Oncol 113:507–538

    PubMed  Google Scholar 

  15. Aterman K, Altmann H-W (1979) Das intrahepatische Gallen-wegsystem. In: Kühn HA, Wernze H (eds) Klinische Hepatologie. Thieme, Stuttgart, pp 1.53–1.62

    Google Scholar 

  16. Aterman K, Lau H, Gillis DA (1971) The response of the liver to the implantation of artificial bile ducts. J Pediatr Surg 6:413–420

    PubMed  Google Scholar 

  17. Ayres RCS, Hübscher SG, Shaw J, Garner C, Joplin R, Williams A, Neuberger JM (1991) New monoclonal antibodies reacting with bile ducts: further insights into the pathogenesis of bile ductular proliferation in biliary diseases. J Pathol 165:153–161

    PubMed  Google Scholar 

  18. Bannasch P (1968) The cytoplasm of hepatocytes during carcinogenesis. Electron- and light-microscopical investigations of the nitrosomorpholine-intoxicated rat liver. Recent Results Cancer Res 19:1–100

    Google Scholar 

  19. Bannasch P (1975) Chemical carcinogenesis: early morphological and cytochemical changes. In: The prediction of chronic toxicity from short-term studies. Excerpta Med Int Congr Ser 376:21–31

  20. Bannasch P (1975) Die Cytologie der Hepatocarcinogenese. In: Altmann H-W, Büchner F et al. (eds) Handbuch der allgemeinen Pathologie, vol 6. Grundmann E (ed) Tumors III: part VII. Modelle experimenteller Carcinogenese. Springer, Berlin, pp 123–276

    Google Scholar 

  21. Bannasch P (1984) Sequential cellular changes during chemical carcinogenesis. J Cancer Res Clin Oncol 108:11–22

    PubMed  Google Scholar 

  22. Bannasch P (1986) Preneoplastic lesions as end points in carcinogenicity testing: II. Preneoplasia in various non-hepatic tissues. Carcinogenesis 7:849–852

    PubMed  Google Scholar 

  23. Bannasch P (1988) Phenotypic cellular changes as indicators of stages during neoplastic development. In: Iversen OH (ed) Theories of carcinogenesis. Hemisphere, Washington, pp 231–249

    Google Scholar 

  24. Bannasch P (1989) Phenotypic cellular changes in multistage carcinogenesis. In: Travis CC (ed) Biologically-based methods for cancer risk assessment. Plenum, New York, pp 55–62

    Google Scholar 

  25. Bannasch P (1990) Pathobiology of chemical hepatocarcino-genesis: recent progress and perspectives: part I. Cytomorphological changes and cell proliferation. J Gastroenterol Hepatol 5:149–159. Part II. Metabolic and molecular changes. J Gastroenterol Hepatol 5:310–320

    PubMed  Google Scholar 

  26. Bannasch P, Massner B (1976) Histogenese und Cytogenese von Cholangiofibromen und Cholangiocarcinomen bei Nitrosomorpholin-vergifteten Ratten. Z Krebsforsch 87:239–255

    Google Scholar 

  27. Bannasch P, Massner B (1977) Die Feinstruktur des Nitrosomorpholin-induzierten Cholangiofibroms der Ratte. Virchows Arch [B] 24:295–315

    Google Scholar 

  28. Bannasch P, Zerban H (1986) Pathogenesis of primary liver tumors induced by chemicals. Recent Results Cancer Res 100:1–15

    Google Scholar 

  29. Bannasch P, Zerban H (1990) Tumours of the liver. In: Turusov VS, Mohr U (eds) Pathobiology of tumours in laboratory animals, vol 1. Tumours of the rat. International Agency for Research on Cancer, Lyon, pp 199–240

    Google Scholar 

  30. Bannasch P, Mayer D, Hacker H-J (1980) Hepatocellular glycogenosis and hepatocarcinogenesis. Biochim Biophys Acta 605:217–245

    PubMed  Google Scholar 

  31. Bannasch P, Benner U, Hacker H-J, Klimek F, Mayer D, Moore M, Zerban H (1981) Cytochemical and biochemical microanalysis of carcinogensis. Histochem J 13:799–820

    PubMed  Google Scholar 

  32. Bannasch P, Zerban H, Hacker HJ (1985) Foci of altered hepatocytes, rat. In: Jones TC, Mohr U, Hunt RD (eds) Monographs of pathology of laboratory animals, digestive system. Springer, Berlin Heidelberg New York, pp 10–30

    Google Scholar 

  33. Bannasch P, Enzmann H, Klimek F, Weber E, Zerban H (1986) Significance of sequential cellular changes inside and outside foci of altered hepatocytes during hepatocarcinogenesis. Toxicol Pathol 17:617–629

    Google Scholar 

  34. Bannasch P, Enzmann H, Hacker J, Weber E, Zerban H (1989) Comparative pathobiology of hepatic preneoplasia. In: Bannasch P, Keppler D, Weber G (eds) Liver cell carcinoma. Kluwer, Dordrecht, pp 55–76

    Google Scholar 

  35. Bannasch P, Hacker HJ, Klimek F, Mayer D, Stumpf H, Zerban H (1991) Cytochemical, microbiochemical and molecular genetic analysis of chemical carcinogenesis. Prog Histochem Cytochem (in press)

  36. Beard JW, Hillman EA, Beard D, Lapis K, Heine U (1975) Neoplastic response of the avian liver to host infection with strain MC29 leukosis virus. Cancer Res 35:1603–1627

    PubMed  Google Scholar 

  37. Becker FF (1978) Characterization of hepatic nodules. In: Newberne PM, Butler WH (eds) Rat hepatic neoplasia. MIT Press, Cambridge, Mass, pp 42–57

    Google Scholar 

  38. Becker RL, Mikel UV (1990) Interrelation of formalin fixation, chromatin compactness and DNA values as measured by flow and image cytometry. Anal Quant Cytol Histol 12:333–341

    PubMed  Google Scholar 

  39. Becker FF, Fox RA, Klein KM, Wolman SR (1971) Chromosome patterns in rat hepatocytes duringN-2-fluorenylacetamide carcinogenesis. J Natl Cancer Inst 46:1261–1269

    PubMed  Google Scholar 

  40. Beresford WA (1990) Direct transdifferentation: can cells change their phenotype without dividing? Cell Differ Dev 29:81–93

    PubMed  Google Scholar 

  41. Bose KK, Curley S, Smith WJ, Allison DC (1989) Differences in the flow and absorption cytometric DNA distributions of mouse hepatocytes and tumor cells. Cytometry 10:388–393

    PubMed  Google Scholar 

  42. Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Fischer, Jena

    Google Scholar 

  43. Braun L, Goyette M, Yaswen P, Thompson NL, Fausto N (1987) Growth in culture and tumorigenicity after transfection with theras oncogene of liver epithelial cells from carcinogentreated rats. Cancer Res 47:4116–4124

    PubMed  Google Scholar 

  44. Braun L, Mikumo R, Fausto N (1989) Production of hepatocellular carcinoma by oval cells: Cell cycle expression of c-myc and p53 at different stages of oval cell transformation. Cancer Res 49:1554–1661

    PubMed  Google Scholar 

  45. Brock N, Druckerey H, Hamperl H (1940) Die Erzeugung von Leberkrebs durch den Farbstoff 4-Dimethylaminoazobenzol. Z Krebsforsch 50:431–456

    Google Scholar 

  46. Brodsky WY, Uryvaeva IV (1977) Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol 50:275–332

    PubMed  Google Scholar 

  47. Brown DC, Gatter KC (1990) Monoclonal antibody Ki-67: its use in histopathology. Histopathology 17:489–503

    PubMed  Google Scholar 

  48. Bruni C (1973) Distinctive cells similar to fetal hepatocytes associated with liver carcinogenesis by diethylnitrosamine. Electron microscopic study. J Natl Cancer Inst 50:1513–1528

    PubMed  Google Scholar 

  49. Buchner T, Hiddemann W, Wormann B, Kleinemeier B, Schuman J, Gohde W, Ritter J, Müller K-M, Bassewitz DB von, Roessner A, Grundmann E (1984) Differential pattern of DNA aneuploidy in human tumors. J Clin Pathol 37:961–974

    PubMed  Google Scholar 

  50. Buick RN, Pollack MN (1984) Perspectives on clonogenic tumor cells, stem cells, and oncogenes. Cancer Res 44:4909–4918

    PubMed  Google Scholar 

  51. Burger H-J, Gebhardt R, Mayer C, Mecke D (1989) Different capacities for amino-acid transport in periportal and perivenous hepatocytes isolated by digitonin/collagenase perfusion. Hepatology 9:22–28

    PubMed  Google Scholar 

  52. Butler WH (1976) bEarly cell changes in the course of chemical carcinogenesis. In: Magee PN et al. (eds) Fundamentals in cancer prevention. University Park, Baltimore, pp 80–102

    Google Scholar 

  53. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200

    PubMed  Google Scholar 

  54. Cairns J (1981) The origin of human cancers. Nature 289:353–357

    PubMed  Google Scholar 

  55. Cameron RG (1988) Comparison of GST-P versus GGT as markers of hepatocellular lineage during analyses of initiation of carcinogenesis. Cancer Invest 6:725–734

    PubMed  Google Scholar 

  56. Cameron RG (1989) Identification of the putative first cellular step of chemical hepatocarcinogenesis. Cancer Lett 47:163–167

    PubMed  Google Scholar 

  57. Cameron RG, Blanck A, Armstrong D (1990) Sex differences in response to four promotion regimens in spite of common first cellular steps in the hepatocellular cancer process initiated by diethylnitrosamine. Cancer Lett 50:109–113

    PubMed  Google Scholar 

  58. Carthew P, Edwards RE, Hill RJ, Evans JG (1989) Cytokeratin expression in cells of the rodent bile duct developing under normal and pathological conditions. Br J Exp Pathol 70:717–725

    PubMed  Google Scholar 

  59. Castelain P, Deleener A, Kirsch-Volders M, Barbason H (1989) Cell population kinetics and ploidy rate of early focal lesions during hepatocarcinogenesis in the rat. Br J Cancer 60:827–833

    PubMed  Google Scholar 

  60. Cossel L (1987) Intermediärzellen im Pankreas und zelluläre Transformation. Allg Pathol 133:503–516

    Google Scholar 

  61. Cossel L, Wohlrab F, Blech W, Hahn HJ (1990) Morphological findings in the liver of diabetic rats after intraportal trans-plantation of neonatal isologous pancreatic islets. Virchows Arch [B] 59:65–77

    Google Scholar 

  62. Cote RJ, Urmacher C (1990) Rhabdomyosarcoma of the liver associated with long-term oral contraceptive use. Possible role of estrogens in the genesis of embryologically distinct liver tumors. Am J Surg Pathol 14:784–790

    PubMed  Google Scholar 

  63. Danielsen HE, Steen HB, Lindmo T, Reith A (1988) Ploidy distribution in experimental liver carcinogenesis in mice. Carcinogenesis 9:59–69

    PubMed  Google Scholar 

  64. Deleener A, Castelain P, Preat V, Gerlache JD, Alexandre H, Kirsch-Volders M (1987) Changes in nodular transcriptional activity and nuclear DNA content during the first stages of rat hepatocarcinogenesis. Carcinogenesis 8:195–201

    PubMed  Google Scholar 

  65. Dempo K, Chisaka N, Yoshida Y, Kaneko A, Onoe T (1975) Immunofluorescent study on α-fetoprotein-producing cells in the early stage of 3′-methyl-4-dimethylaminoazobenzene carcinogenesis. Cancer Res 35:1282–1287

    PubMed  Google Scholar 

  66. Desmet VJ (1985) Intrahepatic bile ducts under the lens. J Hepatol 1:545–559

    PubMed  Google Scholar 

  67. Desmet V (1987) Modulation of biliary epithelium. In: Modulation of liver cell expression. Falk Symp 43:195–214

    Google Scholar 

  68. Desmet VJ, Eyken P van, Sciot R (1990) Cytokeratins for probing cell lineage relationships in developing liver. Hepatology 12:1249–1251

    PubMed  Google Scholar 

  69. Digernes V, Iversen OH (1984) Flow cytometry of nuclear DNA content in liver cirrhosis and liver tumours in rats exposed to acetylaminofluorene. Virchows Arch [B] 47:139–146

    Google Scholar 

  70. Diwan BA, Ward JM, Rice JM (1991) Modification of liver tumor development in rodents. Prog Exp Tumor Res 33:76–107

    PubMed  Google Scholar 

  71. Dunsford HA, Karnasuta C, Hunt JM, Sell S (1989) Different lineages of chemically induced hepatocellular carcinoma in rats defined by monoclonal antibodies. Cancer Res 49:4894–4900

    PubMed  Google Scholar 

  72. Dunsford HA, Sell S, Chisari FV (1990) Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res 50:3400–3407

    PubMed  Google Scholar 

  73. Durante F (1874) Nesso fisio-patologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Archivio Memorie Osservazione Chirurgia Pratica. Palasciano, Napoli, pp 216–217

  74. Editorial (1989) Stem cells in neoplasia. Lancet, 1:701–702

  75. Edmondson HA, Steiner PE (1954) Primary carcinoma of the liver. A study of 100 cases among 48 900 necropsies. Cancer 7:462–503

    PubMed  Google Scholar 

  76. Eggel H (1901) Ueber das primäre Carcinom der Leber. Inaugural Disseration, Jena

  77. Embleton MN, James HS, Haynes AJ, Butler PC (1989) Heterogeneity of hepatocyte antigen expression in rat liver carcinogenesis: concordance between neoplastic nodules and tumours. Br J Exp Pathol 70:647–657

    PubMed  Google Scholar 

  78. Emmelot P (1971) Some aspects of the mechanism of liver carcinogenesis. In: Liver cancer. International Agency for Research on Cancer, Lyon, pp 94–109

    Google Scholar 

  79. Emmelot P, Scherer E (1980) The first relevant cell stage in rat liver carcinogenesis. A quantitative approach. Biochim Biophys Acta 605:247–304

    PubMed  Google Scholar 

  80. Engelhardt NV, Factor VM, Yasova AK, Poltoranina VS, Baranov VN, Lasareva MN (1990) Common antigens of mouse oval and biliary epithelial cells. Expression on newly formed hepatocytes. Differentiation 45:20–37

    Google Scholar 

  81. Enzmann H, Bannasch P (1987) Potential significance of phenotypic heterogeneity of focal lesions at different stages in hepatocarcinogenesis. Carcinogenesis 8:1607–1612

    PubMed  Google Scholar 

  82. Enzmann H, Bannasch P (1987) Morphometric study of alterations of extrafocal hepatocytes of rat liver treated withN-nitrosomorpholine. Virchows Arch [B] 53:218–226

    Google Scholar 

  83. Epstein S, Ito N, Merkow L, Farber E (1967) Cellular analysis of liver carcinogenesis: the induction of large hyperplastic nodules in the liver with 2-fluorenylacetamide or ethionine and some aspects of their morphology and glycogen metabolism. Cancer Res 27:1702–1711

    PubMed  Google Scholar 

  84. Esteban JM, Sheibani K, Owens M, Joyce J, Bailey A, Battifora H (1991) Effects of various fixatives and fixation conditions on DNA ploidy analysis. A need for strict internal DNA standards. Am J Clin Pathol 95:460–466

    PubMed  Google Scholar 

  85. Evarts RP, Nagy P, Marsden E, Thorgeirsson SS (1987) A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8:1737–1740

    PubMed  Google Scholar 

  86. Evarts RP, Nakatsukasa H, Marsden ER, Hsia C-C, Dunsford HA, Thorgeirsson SS (1990) Cellular and molecular changes in the early stages of chemical hepatocarcinogenesis in the rat. Cancer Res 50:3439–3444

    PubMed  Google Scholar 

  87. Farber E (1956) Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylaminofluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Res 16:142–148

    PubMed  Google Scholar 

  88. Farber E (1976) On the pathogenesis of experimental hepatocellular carcinoma. In: Okuda K, Peters RL (eds) Hepatocellular carcinoma. Wiley, New York, pp 3–22

    Google Scholar 

  89. Farber E (1979) Response of the liver to carcinogens. A new analytical approach. In: Farber E, Fisher M (eds) Toxic injury of liver. pp 445–467

  90. Farber E (1980) The sequential analysis of liver cancer induction. Biochim Biophys Acta 605:149–166

    PubMed  Google Scholar 

  91. Farber E (1982) Chemical carcinogenesis: a biologic perspective. Am J Pathol 106:271–296

    PubMed  Google Scholar 

  92. Farber E (1984) Pre-cancerous steps in carcinogenesis. Their physiological adaptive nature. Biochim Biophys Acta 738:171–180

    PubMed  Google Scholar 

  93. Farber E (1984) Perspectives in Cancer Research. The multistep nature of cancer development. Cancer Res 44:4217–4223

    PubMed  Google Scholar 

  94. Farber E (1984) Cellular biochemistry of the stepwise development of cancer with chemicals: GHA Clowes Memorial Lecture. Cancer Res 44:5463–5474

    PubMed  Google Scholar 

  95. Farber E (1987) Liver cell cancer: insights into the pathogenesis of hepatocellular carcinoma in humans from experimental hepatocarcinogenesis in the rat. In: Farber E, Phillips MJ, Kaufman N (eds) Pathogenesis of liver diseases. Williams & Wilkins, Baltimore, pp 199–222

    Google Scholar 

  96. Farber E (1987) Experimental induction of hepatocellular carcinoma as a paradigm for carcinogenesis. Clin Physiol Biochem 5:152–159

    PubMed  Google Scholar 

  97. Farber E (1989) Cancer: a disease of adaptation? Proc Am Assoc Cancer Res 30:672–673

    Google Scholar 

  98. Farber E (1990) Clonal adaptation during carcinogenesis. Biochem Pharmacol 39:1837–1846

    PubMed  Google Scholar 

  99. Farber E, Cameron RG (1980) The sequential analysis of cancer development. Adv Cancer Res 31:125–226

    PubMed  Google Scholar 

  100. Farber E, Sarma DSR (1987) Hepatocarcinogenesis: a dynamic perspective. Lab Invest 56:4–22

    PubMed  Google Scholar 

  101. Farber E, Hartman SP, Solt D, Cameron R (1976) Precancerous liver cell populations and their identification. In: Magee PN et al. (eds) Fundamentals in cancer prevention. University Park Press, Baltimore, pp 71–87

    Google Scholar 

  102. Farber E, Cameron RG, Laishes B, Lin J-C, Medline A, Ogawa K, Solt DB (1979) Physiological and molecular markers during carcinogenesis. In: Griffin AC, Shaw CR (eds) Carcinogens: identification and mechanisms of action. Raven, New York, pp 319–335

    Google Scholar 

  103. Faris RA, McEntire KD, Thompson NL, Hixson DC (1990) Identification and characterization of a rat hepatic oncofetal membrane glycoprotein. Cancer Res 50:4755–4763

    PubMed  Google Scholar 

  104. Faris RA, Monfils BA, Dunsford HA, Hixson DC (1991) Antigenic relationship between oval cells and a subpopulation of hepatic foci, nodules, and carcinomas induced by the “resistant hepatocyte” model system. Cancer Res 51:1308–1317

    PubMed  Google Scholar 

  105. Fausto N (1990) Oval cells and liver carcinogenesis: an analysis of cell lineages in hepatic tumors using oncogene transfection techniques. In: Mouse liver carcinogenesis: mechanisms and species comparisons. Liss, pp 325–334

  106. Fausto N, Mead JE (1989) Regulation of liver growth: protooncogenes and transforming growth factors. Lab Invest 60:4–13

    PubMed  Google Scholar 

  107. Fausto N, Thompson NL, Braun L (1987) Purification and culture of oval cells from rat liver. In: Pretlow II TG, Pretlow TP (eds) Cell separation. Methods and selected applications, vol 4. Academic Press, New York, pp 45–77

    Google Scholar 

  108. Fetzer BK (1868) Beitrag zur Histogenese des Leberkrebses. Dissertation, Tübingen, 1868. [Quoted by Perls M (1972) Beiträge zur Geschwulstlehre. Virchows Arch Pathol Anat 56:437–467]

    Google Scholar 

  109. Firminger HI (1955) Histopathology of carcinogenesis and tumors of the liver in rats. J Natl Cancer Inst 15:1427–1442

    PubMed  Google Scholar 

  110. Firminger HI, Mulay AS (1952) Histochemical and morphologic differentiation of induced tumors of the liver in rats. J Natl Cancer Inst 13:19–33

    PubMed  Google Scholar 

  111. Fischer HP, Altmannsberger M, Weber K, Osborn M (1987) Keratin polypeptides in malignant epithelial liver tumors. Differential diagnostic and histogenetic aspects. Am J Pathol 127:530–537

    PubMed  Google Scholar 

  112. Fischer HP, Doppl W, Osborn M, Altmannsberger M (1988) Evidence for a hepatocellular lineage in a combined hepatocellular-cholangiocarcinoma of transitional type. Virchows Arch [B] 56:71–76

    Google Scholar 

  113. Fischer HP, Lankes G, Altmannsberger M (1989) Atypische Keratinpolypeptidexpression in Lebertumoren und nicht-neoplastischen Leberekrankungen. Verh Dtsch Ges Pathol 73:1989

    Google Scholar 

  114. Fish DE, Al-Izzi M, George PP, Whitaker B (1990) Combined endocrine cell carcinoma and adenocarcinoma of the gallbladder. Histopathology 17:471–472

    PubMed  Google Scholar 

  115. Fishback FC (1929) A morphologic study of regeneration of the liver after partial removal. Arch Pathol 7:955–977

    Google Scholar 

  116. Foerster A (1855) Handbuch der pathologischen Anatomie. Leipzig

  117. Fujimoto J, Okamoto E, Yamanaka K, Toyosaka A, Mitsunobu M (1991) Flow cytometric DNA analysis of hepatocellular carcinoma. Cancer 67:939–944

    PubMed  Google Scholar 

  118. Furukawa K, Shimada T, Englund P, Mochizuki Y, Williams GM (1987) Enrichment and characterization of clonogenic epithelial cells from adult rat liver and initiation of epithelial cell strains. In Vitro Cell Dev Biol 23:339–348

    PubMed  Google Scholar 

  119. Furukawa K, Yokkoi T, Kodama T, Mochizuki Y (1987) Properties of a newly established adult rat liver epithelial cell strain and its application to transformation assay to detect epigenetic carcinogens. Tumor Res 22:87–102

    Google Scholar 

  120. Gall JAM, Bhathal PS (1990) Origin and involution of hyperplastic bile ductules following total biliary obstruction. Liver 10:106–115

    PubMed  Google Scholar 

  121. Gall JAM, Bhathal PS (1990) Development of intrahepatic bile ducts in rat foetal liver explants in vitro. J Exp Pathol 71:41–50

    Google Scholar 

  122. Gallagher JT (1985) The cell-surface membrane in malignancy. In: Farmer PB, Walker JM (eds) The molecular basis of cancer. Croomhelm, London, pp 37–69

    Google Scholar 

  123. Gardner R, Beddington RSP (1988) Multilineage “stem” cells in the mammalian embryo. J Cell Sci [Suppl] 10:11–27

    Google Scholar 

  124. Garfield S, Huber BE, Nagy P, Cordingley MG, Thorgeirsson SS (1988) Neoplastic transformation and lineage switching of rat liver epithelial cells by retrovirus-associated oncogenes. Mol Carcinogenesis 1:189–195

    Google Scholar 

  125. Gebhardt R (1988) Different proliferative activity in vitro of periportal and perivenous hepatocytes. Scand J Gastroenterol 23:8–18

    Google Scholar 

  126. Gebhardt R (1990) Heterogeneous intrahepatic distribution of glutamine synthetase. Acta Histochem [Suppl] (Jena) 40:23–28

    Google Scholar 

  127. Gebhardt R, Burger H-J, Heini H, Schreiber K-L, Mecke D (1988) Alterations of hepatic enzyme levels and of the acinar distribution of glutamine synthetase in response to experimental liver injury in the rat. Hepatology 8:822–830

    PubMed  Google Scholar 

  128. Gebhardt R, Schäfer-Degenhart I (1988) Monoclonal antibodies directed against rat liver epithelial cell lines selectively recognize bile duct epithelium in livers of adult rats. Cell Biol Toxicol 4:379–392

    PubMed  Google Scholar 

  129. Gebhardt R, Tanaka T, Williams GM (1989) Glutamine synthetase heterogeneous expression as a marker for the cellular lineage of preneoplastic and neoplastic liver populations. Carcinogenesis 110:1917–1923

    Google Scholar 

  130. Gebhardt R, Schmid H, Fitzke H (1989) Immunhistochemical localization of glutamine synthetase in human liver. Experientia 45:137–139

    PubMed  Google Scholar 

  131. Gerber MA, Thung SN, Shen S, Stromeyer FW, Ishak KG (1983) Phenotypic characterization of hepatic proliferation. Antigenic expression by proliferating epithelial cells in fetal liver, massive hepatic necrosis, and nodular transformation of the liver. Am J Pathol 110:70–74

    PubMed  Google Scholar 

  132. Germain L, Goyette R, Marceau N (1985) Differential cytokeratin and α-fetoprotein expression in morphologically distinct epithelial cells emerging at the early stage of rat hepatocarcinogenesis. Cancer Res 45:673–681

    PubMed  Google Scholar 

  133. Germain L, Noel M, Gourdeau H, Marceau N (1988) Promotion of growth and differentiation of rat ductular oval cells in primary culture. Cancer Res 48:368–378

    PubMed  Google Scholar 

  134. Germain L, Blouin MJ, Marceau N (1988) Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, α-fetoprotein, albumin, and cell surface-exposed components. Cancer Res 48:4909–4918

    PubMed  Google Scholar 

  135. Ghoshal AK, Mullen B, Medline A, Farber E (1983) Sequential analysis of hepatic carcinogenesis. Regeneration of liver after carbon tetrachloride-induced liver necrosis when hepatocyte proliferation is inhibited by 2-acetylaminofluorene. Lab Invest 48:224–230

    PubMed  Google Scholar 

  136. Goodfellow PN (1983) In discussion of Jacob, F: Expression of embryonic characters by malignant cells. CIBA Found Symp 96:4–27

    PubMed  Google Scholar 

  137. Goodman ZD, Ishak KG, Langloss JM, Sesterhenn IA, Rabin L (1985) Combined hepatocellular-cholangiocarcinoma. A histologic and immunohistochemical study. Cancer 55:124–135

    PubMed  Google Scholar 

  138. Gould VE (1986) Histogenesis and differentiation: a re-evaluation of these concepts as criteria for the classification of tumors. Hum Pathol 17:212–214

    PubMed  Google Scholar 

  139. Goyette M, Faris R, Braun L, Hixson D, Fausto N (1990) Expression of hepatocyte and oval cell antigens in hepatocellular carcinomas produced by oncogene-transfected liver epithelial cells. Cancer Res 50:4809–4817

    PubMed  Google Scholar 

  140. Green JA, Carthew P, Heuillet E, Simpson JL, Manson MM (1990) Cytokeratin expression during AFB1-induced carcinogenesis. Carcinogenesis 11:1175–1182

    PubMed  Google Scholar 

  141. Grisham JW (1980) Cell types in long-term propagable cultures of rat liver. Ann NY Acad Sci 349:128–137

    PubMed  Google Scholar 

  142. Grisham JW, Hartroft WS (1961) Morphologic identification by electron microscopy of “oval” cells in experimental hepatic degeneration. Lab Invest 10:317–332

    PubMed  Google Scholar 

  143. Grisham JW, Porta EA (1964) Origin and fate of proliferated hepatic ductal cells in the rat: electron microscopic and autoradiographic studies. Exp Mol Pathol 3:242–261

    Google Scholar 

  144. Grundmann E (1961) Die Zytogenese des Krebses. Dtsch Med Wochenschr 86:1077–1084

    PubMed  Google Scholar 

  145. Grundmann E, Sieburg H (1962) Die Histogenese und Cytogenese des Lebercarcinoms der Ratte durch Diäthylnitrosamin im lichtmikroskopischen Bild. Beitr Pathol Anat Allg Pathol 126:57–90

    Google Scholar 

  146. Guguen-Guillouzo C, Baffet G, Etienne PL, Glaise D, Defer N, Corral M, Corcos D, Kruh J (1988) Role of oncogenes in hepatocarcinogenesis. In: Roberfroid MB, Préat V (eds) Experimental hepatocarcinogenesis. Plenum, New York, pp 245–253

    Google Scholar 

  147. Gumucio JJ (1989) Hepatocyte heterogeneity: the coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning and regulation. Hepatology 9:154–160

    PubMed  Google Scholar 

  148. Hadjiolov DC (1965) Histochemical studies of some oxidative enzymes in the early proliferative stage of liver carcinogenesis. Z Krebsforsch 55:473–477

    Google Scholar 

  149. Haesen S, Derycke T, Deleener A, Castelain PH, Alexandre H, Preat V, Kirsch-Volders M (1988) The influence of phenobarbital and butylated hydroxytoluene on the ploidy rate in rat hepatocarcinogenesis. Carcinogenesis 9:1755–1761

    PubMed  Google Scholar 

  150. Haglund C, Lindgren J, Roberts PJ, Nordling S (1991) Difference in tissue expression of tumour markers CA 19-9 and CA 50 in hepatocellular carcinoma and cholangiocarcinoma. Br J Cancer 63:386–389

    PubMed  Google Scholar 

  151. Hall PA (1989) What are stem cells and how are they controlled? J Pathol 158:275–277

    PubMed  Google Scholar 

  152. Hall PA, Watt FM (1989) Stem cells: the generation and maintenance of cellular diversity. Development 106:619–633

    PubMed  Google Scholar 

  153. Hall PA, Levison DA (1989) Biphasic tumors: Clues to possible histogenesis in developmental processes. J Pathol 159:1–2

    PubMed  Google Scholar 

  154. Hansemann D von (1890) Über asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch Pathol Anat Physiol Klin Med 119:299–326

    Google Scholar 

  155. Hansemann D von (1893) Das Krebsstroma und die Grawitz'sche Theorie der Schlummerzellen. Virchows Arch Pathol Anat Physiol Klin Med 133:147–165

    Google Scholar 

  156. Hayner NT, Braun L, Yaswen P, Brooks M, Fausto N (1984) Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers. Cancer Res 44:332–338

    PubMed  Google Scholar 

  157. Heidemann W (1892) Ueber Entstehung und Bedeutung der kleinzelligen Infiltration bei Carcinomen. Virchows Arch Pathol Anat Physiol Klin Med 129:77–109

    Google Scholar 

  158. Hieger I (1959) Theories of carcinogenesis. In: CIBA Foundation Symposium on Carcinogenesis. Churchill, London, pp 3–11

    Google Scholar 

  159. Higgins GK (1970) The pathologic anatomy of primary hepatic tumors. Recent Results Cancer Res 26:15–37

    Google Scholar 

  160. Hillan KJ, Burt AD, George WD, MacSween RNM, Griffiths MR, Bradley JA (1989) Intrasplenic hepatocyte transplantation in rats with experimental liver injury: morphological and morphometric studies. J Pathol 159:67–73

    PubMed  Google Scholar 

  161. Hixson DC, Allison JP (1985) Monoclonal antibodies recognizing oval cells induced in the liver of rats by N-2-fluorenyl-acetamide or ethionine in a choline-deficient diet. Cancer Res 45:3750–3760

    PubMed  Google Scholar 

  162. Hixson DC, Faris RA, Thompson NL (1990) An antigenic portrait of the liver during carcinogenesis. Pathobiology 58:65–77

    PubMed  Google Scholar 

  163. Hobik HP, Grundmann E (1962) Quantitative Veränderungen der DNS und der RNS in der Rattenleberzelle während der Carcinogenese durch Diäthylnitrosamin. Beitr Pathol Anat Allg Pathol 127:25–48

    Google Scholar 

  164. Hohne M, Schaefer S, Seifer M, Fettelson MA, Paul D, Gerlich WH (1990) Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO 9:1137–1145

    PubMed  Google Scholar 

  165. Holzner JH, Barka T, Popper H (1959) Changes in deoxyribonucleic acid content of rat liver cells during ethionine intoxication. J Natl Cancer Inst 23:1215–1225

    PubMed  Google Scholar 

  166. Hsu TC (1987) A historical outline of the development of cancer cytogenetics. Cancer Genet Cytogenet 28:5–26

    PubMed  Google Scholar 

  167. Huitfeldt HS, Brandtzaeg P, Poirier MC (1991) Carcinogen-induced alterations in rat liver DNA adduct formation determined by computerized fluorescent image analysis. Lab Invest 64:207–214

    PubMed  Google Scholar 

  168. Hunt SJ, Anderson WD (1990) Malignant rhabdoid tumor of the liver. A distinct clinicopathologic entity. Am J Clin Pathol 94:645–648

    PubMed  Google Scholar 

  169. Inaoka Y (1967) Significance of the so-called oval cell proliferation during azo-dye hepatocarcinogenesis. GANN 58:355–366

    PubMed  Google Scholar 

  170. Iscove N (1990) Searching for stem cells. Nature 347:126–127

    PubMed  Google Scholar 

  171. Ishak KG (1987) New developments in diagnostic liver pathology. In: Farber E, Phillips MJ, Kaufmann (eds) Pathogenesis of liver diseases. Williams & Wilkins, Baltimore, pp 223–373

    Google Scholar 

  172. Ishii M, Vroman B, LaRusso NF (1989) Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology 97:1236–1247

    PubMed  Google Scholar 

  173. Jack EM, Bentley P, Bieri F, Muakkassah-Kelly SF, Staubli W, Suter J, waechter F, Cruz-Orive LM (1990) Increase in hepatocyte and nuclear volume and decrease in the population of binucleated cells in preneoplastic foci of rat liver: a stereological study using the nucleator method. Hepatology 11:286–297

    PubMed  Google Scholar 

  174. Jacob F (1983) Fetal antigens and cancer. Ciba Found 96:4–17

    PubMed  Google Scholar 

  175. James J, Tas J, Bosch KS, de Meere AJP, Schuyt HC (1979) Growth patterns of rat hepatocytes during postnatal development. Eur J Cell Biol 19:222–226

    PubMed  Google Scholar 

  176. Joplin R, Strain AJ, Neuberger JM (1989) Immuno-isolation and culture of biliary epithelial cells from normal human liver. In Vitro Cell Dev Biol 25:1189–1192

    PubMed  Google Scholar 

  177. Jørgensen MJ (1976) The ductal plate malformation: a study of the intrahepatic bile-duct lesion in infantile polycystic disease and congenital hepatic fibrosis. Acta Pathol Microbiol Scand [A] [Suppl] 257:33–88

    Google Scholar 

  178. Kakizoe S, Kojiro, Nakashima T (1987) Hepatocellular carcinoma with sarcomatous change. Clinicopathologic and immunohistochemical studies of 14 autopsy cases. Cancer 59:310–316

    PubMed  Google Scholar 

  179. Kelly MD, Styles JA, Pritchard NR (1990) Analysis of cytological changes in hepatocytes from rats dosed with 3′-methyl-4-dimethylaminoazobenzene: initial response appears to involve cytokineses of binucleated cells. Cancer Lett 53:1–4

    PubMed  Google Scholar 

  180. Kimbrough RD (1973) Pancreatic-type tissue in livers of rats fed polychlorinated biphenyls. J Natl Cancer Inst 51:679

    PubMed  Google Scholar 

  181. Kinosita R (1937) Studies on the cancerogenic chemical substances. Trans Jpn Pathol Soc 27:665–727

    Google Scholar 

  182. Kinosita R (1955) Some recent findings concerning hepatomas induced withp-dimethylaminoazobenzene. J Natl Cancer Inst 15:1443–1445

    PubMed  Google Scholar 

  183. Kitagawa T, Yokochi T, Sugano H (1972) α-Fetoprotein and hepatocarcinogenesis in rats fed 3′-methyl-4-(dimethylamino)azobenzene orN-2-fluorenylacetamide. Int J Cancer 10:368–381

    PubMed  Google Scholar 

  184. Kitagawa T, Yokochi T, Sugano H (1973) α-Fetoprotein and hepatocarcinogenesis in rats. Gann Monogr Cancer Res 14:249–268

    Google Scholar 

  185. Klose U, Thierau D, Greim H, Schwarz LR (1989) Centrifugal elutriation of hepatocytes from 2-acetylaminofluorene-treated rats and their characterization by flow cytometry. Carcinogenesis 10:553–556

    PubMed  Google Scholar 

  186. Kohler G, Milstein C (1975) Continuous culture of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    PubMed  Google Scholar 

  187. Koike Y, Suzuki Y, Nagata A, Furuta S, Nagata T (1982) Studies on DNA content of hepatocytes in cirrhosis and hepatoma by means of microspectrophotometry and radioautography. Histochemistry 73:549–562

    PubMed  Google Scholar 

  188. Kondo S (1983) Carcinogenesis in relation to the stem-cell-mutation hypothesis. Differentiation 24:1–8

    PubMed  Google Scholar 

  189. Kopper L, Lapis K, Schaff Z, Mihalik R, Karácsony S, Szécsény A (1991) Flow cytometric analysis of DNA content in focal nodular hyperplasia and hepatocellular carcinoma. Neoplasma 38:257–263

    PubMed  Google Scholar 

  190. Koss LG, Czerniak B, Herz T, Wersto RP (1989) Flow cytometric measurements of DNA and other cell components in human tumors: a critical appraisal. Human Pathol 20:528–548

    Google Scholar 

  191. Kuhlmann WD, Kuhlmann M (1982) Immunohistological localization of alpha-fetoprotein in normal and diseased liver. Acta Histochem [Suppl] 25:63–68

    Google Scholar 

  192. Kurumaya H, Terada T, Nakanuma Y (1990) “Metaplastic lesions” in intrahepatic bile ducts in hepatolithiasis: a histochemical and immunohistochemical study. J Gastroenterol Hepatol 5:530–536

    PubMed  Google Scholar 

  193. Lacassagne A (1968) Sur l'histogenèse des carcinomes hépatiques. À propos des foetoproteines spécifiques. Bull Cancer (Paris) 55:181–204

    Google Scholar 

  194. Lack EE, Schloo BL, Azumi N, Travis WD, Grier HE, Kozakewich PW (1991) Undifferentiated (embryonal) sarcoma of the liver. Clinical and pathologic study of 16 cases with emphasis on immunohistochemical features. Am J Surg Pathol 15:1–16

    PubMed  Google Scholar 

  195. Lai Y-S, Thung SN, Gerber MA, Chen M-L, Schaffner F (1989) Expressions of cytokeratins in normal and diseased livers and in primary liver carcinomas. Arch Pathol Lab Med 113:134–138

    PubMed  Google Scholar 

  196. Laird AK, Barton AD (1961) Cell proliferation in precancerous liver: relation to presence and dose of carcinogen. J Natl Cancer Inst 27:827–839

    PubMed  Google Scholar 

  197. Lamas E, Schweighoffer F, Kahn A (1986) Early modifications of gene expression induced in liver by azo-dye diet. FEBS Lett 206:229–232

    PubMed  Google Scholar 

  198. Leblond CP (1964) Classification of cell populations on the basis of their proliferative behavior. In: International symposium on control of cell division and the induction of cancer. Natl Cancer Inst Monogr 14:119–150

    PubMed  Google Scholar 

  199. Leblond CP, Cheng H (1976) Identification of stem cells in the small intestine of the mouse. In: Cairnie AB et al. (eds) Stem cells of renewing populations. Academic Press, New York, pp 7–31

    Google Scholar 

  200. Lee BC, Hendriks JD, Bailey GS (1989) Metaplastic pancreatic cells in liver tumors induced by diethylnitrosamine. Exp Mol Pathol 50:104–113

    PubMed  Google Scholar 

  201. Lee LW, Tsao M-S, Grisham JW, Smith GJ (1989) Emergence of neoplastic transformants spontaneously or after exposure toN-methyl-N′-nitro-N-nitrosoguanidine in populations of rat liver epithelial cells cultured under selective and nonselective conditions. Am J Pathol 135:63–71

    PubMed  Google Scholar 

  202. Leffert HL, Koch KS, Lad PU, Skelly H, de Hemptinne B (1982) Hepatocyte regeneration, replication and differentiation. In: Arias I, Popper H, Schachter D, Shafritz DA (eds) The liver. Biology and pathobiology. Raven, New York, pp 601–614

    Google Scholar 

  203. Leffert HL, Koch KS, Lad PJ, Shapiro IP, Skelly H, de Hemptinne B (1988) Hepatocyte regeneration, replication and differentiation. In: Arias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver. Biology and pathobiology, 2nd edn. Raven, New York, pp 833–850

    Google Scholar 

  204. Leininger JR, McDonald MM, Abbott DP (1990) Hepatocytes in the mouse stomach. Toxicol Pathol 18:678–686

    PubMed  Google Scholar 

  205. Leuschner I, Schmidt D, Harms D (1990) Undifferentiated sarcoma of the liver in childhood: morphology, flow cytometry and literature review. Hum Pathol 21:68–76

    PubMed  Google Scholar 

  206. Lombardi B (1982) On the nature, properties and significance of oval cells. In: Pani P, Feo F, Columbano A (eds) Recent trends in chemical carcinogenesis, vol 1. ESA, Cagliari, pp 37–56

    Google Scholar 

  207. Lubarsch O (1897) Geschwülste. Ergeb Allgl Pathol 2:566–571

    Google Scholar 

  208. MacCallum WG (1917) Textbook of pathology. Saunders, Philadelphia, p 305

    Google Scholar 

  209. Magee PN, Barnes JM (1967) Carcinogenic nitroso compounds. Adv Cancer Res 10:163–246

    PubMed  Google Scholar 

  210. Maguire S, Rabes MH (1989) Intralobular distribution of preneoplastic foci in rat liver after a single dose ofN-methyl-N-nitrosourea (MNU) following partial hepatectomy. Carcinogenesis 10:871–874

    PubMed  Google Scholar 

  211. Maier P (1988) Development of in vitro toxicity tests with cultures of freshly isolated rat hepatocytes. Experientia 44:807–817

    PubMed  Google Scholar 

  212. Makino Y, Yamamoto K, Tsuji T (1988) Three-dimensional arrangement of ductular structures formed by oval cells during hepatocarcinogenesis. Acta Med Okayama 42:143–150

    PubMed  Google Scholar 

  213. Makino T, Usuda N, Rao S, Reddy JK, Scarpelli DG (1990) Transdifferentiation of ductular cells into hepatocytes in regenerating hamster pancreas. Lab Invest 62:552–561

    PubMed  Google Scholar 

  214. Marceau N (1990) Biology of disease. Cell lineage and differentiation programs in epidermal, urothelial and hepatic tissues and their neoplasms. Lab Invest 63:4–20

    PubMed  Google Scholar 

  215. Marceau N, Germain L, Baribault H (1985) Cytosquelette, différenciation cellulaire et typage tumoral. Union Med Can 114:765–780

    PubMed  Google Scholar 

  216. Marceau N, Blouin MJ, Germain L, Noel M (1989) Role of different epithelial cell types in liver ontogenesis, regeneration and neoplasia. In Vitro Cell Dev Biol 25:336–341

    PubMed  Google Scholar 

  217. Markl J (1991) Cytokeratins in mesenchymal cells: impact on functional concepts of the diversity of intermediate filament proteins. J Cell Sci 98:261–264

    PubMed  Google Scholar 

  218. Mathis GA, Sirica AE (1990) Effects of medium and substratum conditions on the rates of DNA synthesis in primary cultures of bile ductular epithelial cells. In Vitro Cell Dev Biol 26:113–118

    PubMed  Google Scholar 

  219. Mathis GA, Walls SA, D'Amico P, Gengo TF, Sirica AE (1989) Enzyme profile of rat bile ductular epithelial cells in reference to the resistance phenotype in hepatocarcinogenesis. Hepatology 9:477–485

    PubMed  Google Scholar 

  220. McDonald MM, Boorman GA (1989) Pancreatic hepatocytes associated with chronic 2,6-dichloro-p-phenylenediamine administration in Fischer 344 rats. Toxicol Pathol 17:1–6

    PubMed  Google Scholar 

  221. Meder E (1895) Über akute Leberatrophie mit besonderer Berücksichtigung der dabei beobachteten Regenerationserscheinungen. Beitr Pathol Anat 17:143

    Google Scholar 

  222. Medvedev ZA, Crowne HM, Medvedeva MN (1988) Age related variations of hepatocarcinogenic effect of azodye (3′-MDAB) as linked to the level of hepatocyte polyploidization. Mech Ageing Dev 46:159–174

    PubMed  Google Scholar 

  223. Mellin W (1990) Cytophotometry in tumor pathology. A critical review of methods and applications, and some results of DNA analysis. Pathol Res Pract 186:37–62

    PubMed  Google Scholar 

  224. Miettinen M (1990) Immunohistochemistry of solid tumors. Brief review of selected problems. APMIS 98:191–199

    PubMed  Google Scholar 

  225. Miettinen M (1991) Keratin subsets in spindle cell sarcomas: keratins are widespread but synovial sarcoma contains a distinctive keratin polypeptide pattern and desmoplakins. Am J Pathol 138:505–513

    PubMed  Google Scholar 

  226. Miettinen M, Kahlos T (1989) Undifferentiated (embryonal) sarcoma of the liver. Epithelial features as shown by immunohistochemical analysis and electron microscopic examination. Cancer 64:2096–2103

    PubMed  Google Scholar 

  227. Milani S, Herbst H, Schuppan D, Niedobitek G, Kim KY, Stein H (1989) Vimentin expression of newly formed rat bile duct epithelial cells in secondary biliary fibrosis. Virchows Arch [A] 415:237–242

    Google Scholar 

  228. Miller EC, Miller JA (1947) The presence and significance of bound aminoazodyes in the livers of rats fedp-dimethylaminoazobenzene. Cancer Res 7:468–480

    Google Scholar 

  229. Miller JA, Miller EC (1953) The carcinogenic aminoazo dyes. Adv Cancer Res 1:339–396

    PubMed  Google Scholar 

  230. Mintz B (1978) Genetic mosaicism and invivo analyses of neoplasia and differentiation. In: Saunders GF (ed) Cell differentiation and neoplasia. Raven, New York, pp 27–53

    Google Scholar 

  231. Moll R (1988) Differenzierungsprogramme des Epithels und ihre Änderungen. Differentiation programs of epithelia with consideration of program changes. Verh Dtsch Ges Pathol 72:102–114

    PubMed  Google Scholar 

  232. Moore MA, Mayer D, Bannasch P (1982) The dose dependence and sequential appearance of putative preneoplastic populations induced in the rat liver by stop experiments withN-nitrosomorpholine. Carcinogenesis 3:1429–1436

    PubMed  Google Scholar 

  233. Moore MA, Nakagawa K, Satoh K, Ishikawa T, Sato K (1987) Single GST-P positive liver cells-putative initiated hepatocytes. Carcinogenesis 8:483–486

    PubMed  Google Scholar 

  234. Moore MA, Nakagawa K, Ishikawa T (1988) Selection pressure and altered hepatocellular islands after a single injection of aflatoxin. Jpn J Cancer Res (Gann) 79:187–194

    Google Scholar 

  235. Mori W, Nagasako K (1976) Cholangiocarcinoma and related lesions. In: Okuda K, Peters RL (eds) Hepatocellular carcinoma. Wiley, New York, pp 227–246

    Google Scholar 

  236. Nagle RB (1988) Intermediate filaments: a review of basic biology. Am J Surg Pathol 12:[Suppl 1]4–16

    PubMed  Google Scholar 

  237. Nagy P, Evarts RP, McMahon JB, Thorgeirsson SS (1989) Role of TGF-beta in normal differentiation and oncogenesis in rat liver. Mol Carcinogenesis 2:345–354

    Google Scholar 

  238. Nakanuma Y, Ohta G (1986) Immunohistochemical study on bile ductular proliferation in various hepatobiliary diseases. Liver 6:205–211

    PubMed  Google Scholar 

  239. Narita T (1990) Autocrine growth factor and spontaneous transformation of rat liver epithelial cells. In Vitro Cell Dev Biol 26:330–334

    PubMed  Google Scholar 

  240. Nonoyama T, Fullerton F, Reznik G, Bucci TJ, Ward JM (1988) Mouse hepatoblastomas: a histologic, ultrastructural, and immunohistochemical study. Vet Pathol 25:286–296

    PubMed  Google Scholar 

  241. Oberley TD, Slattery AF, Gonzalez A, Li SA, Li JJ (1991) Comparative morphologic and immunohistochemical studies on estrogen plus alpha-naphthoflavone-induced liver tumors in Syrian hamsters and rats. Am J Pathol 139:669–679

    PubMed  Google Scholar 

  242. Ogawa K, Minase T, Onoe T (1974) Demonstration of glucose-6-phosphatase activity in the oval cells of rat liver and the significance of the oval cells in azodye carcinogenesis. Cancer Res 34:3379–3386

    PubMed  Google Scholar 

  243. Okada Y, Jinno K, Moriwaki S, Morichika S, Torigoe S-I, Arima T, Nagashima H, Koprowski H (1987) Expression of ABH and Lewis blood group antigens in combined hepatocellular-cholangiocarcinoma. Possible evidence for the hepatocellular origin of combined hepatocellular-cholangiocarcinoma. Cancer 60:345–352

    PubMed  Google Scholar 

  244. Okita K, Gruenstein M, Klaiber M, Farber E (1974) Localization of α-fetoprotein by immunofluorescence in hyperplastic nodules during hepatocarcinogenesis induced by 2-acetylaminofluorene. Cancer Res 34:2758–2763

    PubMed  Google Scholar 

  245. Opie EL (1944) The pathogenesis of tumors of the liver produced by butter yellow. J Exp Med 80:231–246

    Google Scholar 

  246. Oredipe OA, Schumm DE, Mercurio F, Larroya S, Barth RF, Webb TF (1989) A carcinogenesis- and tumorigenesis-associated rat fetal protein: an immunohistochemical and immunobiochemical study utilizing a new monoclonal antibody, MOFP. Carcinogenesis 10:2175–2181

    PubMed  Google Scholar 

  247. Orr JW (1940) The histology of the rat liver during the course of carcinogenesis by butter-yellow (p-dimethylaminoazobenzene). J Pathol Bacteriol 50:393–408

    Google Scholar 

  248. Paradis K, Sharp HL (1989) In vitro duct-like structure formation after isolation of bile ductular cells from a murine model. J Lab Clin Med 113:689–694

    PubMed  Google Scholar 

  249. Parola M, Cheeseman KH, Biocca ME, Dianzani MV, Slater TF (1990) Biochemical studies on bile duct epithelial cells isolated from rat liver. Hepatology 10:341–345

    Google Scholar 

  250. Paul D (1988) Growth control of hepatocytes, their immortalization and transformation by transforming genes of polyoma virus and of SV40 virus. In: Roberfroid WB, Préat V (eds) Experimental hepatocarcinogenesis. Plenum, New York, pp 267–274

    Google Scholar 

  251. Peraino C, Carnes BA, Stevens FJ, Staffeldt ET, Russell JJ, Prapoulenis A, Blomquist JA, Vesselinovitch SD, Maronpot RR (1988) Comparative developmental and phenotypic properties of altered hepatocyte foci and hepatic tumors in rats. Cancer Res 48:4171–4178

    PubMed  Google Scholar 

  252. Peters RL (1986) Introduction. In: Peters RL, Craig JR (eds) Liver pathology. Churchill Livingstone, New York, pp 1–10

    Google Scholar 

  253. Peters RL (1986) Neoplastic diseases. In: Peters RL, Craig JR (eds) Liver pathology. Churchill Livingstone, New York, pp 337–364

    Google Scholar 

  254. Petropoulos CJ, Yaswen P, Panzica M, Fausto N (1985) Cell lineages in liver carcinogenesis: possible clues from studies of the distribution of α-fetoprotein RNA sequences in cell populations isolated from normal, regenerating, and preneoplastic rat livers. Cancer Res 45:5762–5768

    PubMed  Google Scholar 

  255. Pierce GB (1970) Differentiation of normal and malignant cells. Fed Proc 29:1248–1254

    PubMed  Google Scholar 

  256. Pierce GB, Speers WC (1988) Tumors as caricatures of the process of tissue renewal: Prospects for therapy by directing differentiation. Cancer Res 48:1996–2004

    PubMed  Google Scholar 

  257. Pitot HC, Sirica AE (1980) The stages of initiation and promotion in hepatocarcinogenesis. Biochim Biophys Acta 605:191–215

    PubMed  Google Scholar 

  258. Plenat F, Braun L, Fausto N (1988) Demonstration of glucose-6-phosphatase and peroxisomal catalase activity by ultrastructural cytochemistry in oval cells from livers of carcinogentreated rats. Am J Pathol 130:91–102

    PubMed  Google Scholar 

  259. Popper H, Schaffner F, Stein R (1957) Ductular cell reaction in the liver in hepatic injury. J Mt Sinai Hosp 24:551–556

    Google Scholar 

  260. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    PubMed  Google Scholar 

  261. Praet MM, Roels HJ (1984) Histogenesis of cholangiomas and cholangiocarcinomas in thioacetamide fed rats. Exp Pathol 26:3–14

    PubMed  Google Scholar 

  262. Price JM, Harman JW, Miller EC, Miller JA (1952) Progressive microscopic alterations in the livers of rats fed the hepatocarcinogens 3′-methyl-4-dimethylaminoazobenzene and 4′-fluoro-4-dimethylaminoazobenzene. Cancer Res 12:192–200

    PubMed  Google Scholar 

  263. Rabes HM (1989) Cell proliferation and clonal development in hepatocarcinogenesis. Falk Symp 51:305–313

    Google Scholar 

  264. Rao MS, Bendayann RD, Kimbrough RD, Reddy JK (1986) Characterization of pancreatic-type tissue in the liver of rat induced by polychlorinated biphenyls. J Histochem Cytochem 34:197–201

    PubMed  Google Scholar 

  265. Rao MS, Dwivedi RS, Yeldandi AV, Subbarao V, Tan X, Usman MI, Thangada S, Nemali MR, Kumar S, Scarpelli DG, Reddy JK (1989) Role of periductal and ductular epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage — a change in the differentiation commitment. Am J Pathol 134:1069–1086

    PubMed  Google Scholar 

  266. Rao MS, Yeldandi AV, Reddy JK (1990) Stem cell potential of ductular and periductular cells in the adult rat pancreas. Cell Differ Dev 29:155–163

    PubMed  Google Scholar 

  267. Rather LJ (1978) The genesis of cancer. A study in the history of ideas. Johns Hopkins University Press, Baltimore

    Google Scholar 

  268. Reddy JK, Rao MS, Azarnoff DL, Sell S (1979) Mitogenic and carcinogenic effects of a hypolipidemic peroxisome proliferator [4-chloro-6-2,3-(xylidino)-2-pyriminylthio] acetic acid (Wy-14,643) in rat and mouse liver. Cancer Res 39:152–161

    PubMed  Google Scholar 

  269. Reid E (1962) Significant biochemical effects of hepatocarcinogens in the rat: a review. Cancer Res 22:398–430

    PubMed  Google Scholar 

  270. Reid LM, Abreau SL, Montgomery K (1988) Extracellular matrix and hormonal regulation of synthesis and abundance of messenger RNAs in cultured liver cells. In: Arias JM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 2nd edn. Raven, New York, pp 717–719

    Google Scholar 

  271. Reznik-Schűller HM, Gregg M (1983) Sequential morphologic changes during methapyrilene-induced hepatocellular carcinogenesis in rats. J Natl Cancer Inst 71:1021–1031

    PubMed  Google Scholar 

  272. Richmond RE, De Angelo AB, Potter CL, Daniel FB (1991) The role of hyperplastic nodules in dichloracetic acid-induced hepatocarcinogenesis in B6C3F1 male mice. Carcinogenesis 12:1383–1387

    PubMed  Google Scholar 

  273. Rindfleisch E (1864) Microscopische Studien über das Leberadenoid. Arch Heilkunde 5:395–401

    Google Scholar 

  274. Rippe RA, Brenner DA, Leffert HL (1990) DNA-mediated gene transfer into adult rat hepatocytes in primary culture. Mol Cell Biol 10:689–695

    PubMed  Google Scholar 

  275. Roncalli M, Borzio M, Brando B, Colloredo G, Servida E (1989) Abnormal DNA content in liver-cell dysplasia: a flow cytometric study. Int J Cancer 44:204–207

    PubMed  Google Scholar 

  276. Roskam T, van den Oord JJ De Vos R, Desmet VJ (1990) Neuroendocrine features of reactive bile ductules in cholestatic liver disease. Am J Pathol 137:1019–1025

    PubMed  Google Scholar 

  277. Ruan Y, Hacker HJ, Zerban H, Bannasch P (1989) Ultrastructural and immunocytochemical characterization of the cellular phenotype in primary adenoid liver tumours of the rat. Pathol Res Pract 184:223–233

    PubMed  Google Scholar 

  278. Rubin E (1964) The origin and fate of proliferated bile ductular cells. Exp Mol Pathol 3:279–286

    Google Scholar 

  279. Ruddon RW (1987) Cancer biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  280. Ruebner BH, Gershwin ME, French SW, Meierhenry E, Dunn P, Hsieh LS (1984) Mouse hepatic neoplasia: differences among strains and carcinogens. In: Popp JA (ed) Mouse liver neoplasia. Current perspectives. Chemical Industry Institute of Toxicology Series. Hemisphere, Washington, pp 115–143

    Google Scholar 

  281. Saeter G, Schwarze PE, Seglen PO (1988) Shift from polyploidizing to nonpolyploidizing growth in carcinogen-treated rat liver. J Natl Cancer Inst 80:950–958

    PubMed  Google Scholar 

  282. Saeter G, Schwarze PE, Nesland JM, Juul N, Pettersen EO, Seglen PO (1988) The polyploidizing growth pattern of normal rat liver is replaced by divisional, diploid growth in hepatocellular nodules and carcinomas. Carcinogenesis 939–945

  283. Saeter G, Lee C-Z, Schwarze PE Ous S, Chen D-S, Sung J-L, Seglen PO (1988) Changes in ploidy distribution in human liver carcinogenesis. J Natl Cancer Inst 80:1480–1485

    PubMed  Google Scholar 

  284. Saeter GE, Schwarze PE, Nesland JM, Seglen PO (1989) Diploid nature of hepatocellular tumours developing from transplanted preneoplastic liver lesions. Br J Cancer 59:198–205

    PubMed  Google Scholar 

  285. Sarafoff M, Rabes HM, Dormer P (1986) Correlations between ploidy and initiation probably determined by DNA cytophotometry in individual altered hepatic foci. Carcinogenesis 7:1191–1196

    PubMed  Google Scholar 

  286. Sargent L, Xu Y-H, Sattler GL, Meisner L, Pitot HC (1989) Ploidy and karyotype of hepatocytes isolated from enzyme-altered foci in two different protocols of multistage hepatocarcinogenesis in the rat. Carcinogenesis 10:387–391

    PubMed  Google Scholar 

  287. Sasaki T, Yoshida T (1935) Experimentelle Erzeugung des Lebercarcinoms durch Fütterung mito-Amidoazotoluol. Virchows Arch Pathol Anat Physiol Klin Med 295:175–200

    Google Scholar 

  288. Satoh K, Hatayama I, Tateoka, Tamai K, Shimizu T, Tatematsu M, Ito N, Sato K (1989) Transient induction of single GST-P positive hepatocytes by DEN. Carcinogenesis 10:2107–2111

    PubMed  Google Scholar 

  289. Scarpelli DG (1985) Multipotent developmental capacity of cells in the adult animal. Lab Invest 52:331–333

    PubMed  Google Scholar 

  290. Scarpelli DG, Rao MS (1981) Differentiation of regenerating pancreatic cells into hepatocyte-like cells. Proc Natl Acad Sci USA 78:2577–2581

    PubMed  Google Scholar 

  291. Schaeffer WJ (1980) The long-term culture of a diploid rat hepatocyte cell strain. Ann NY Acad Sci 349:165–182

    PubMed  Google Scholar 

  292. Schapira F (1981) Resurgence of fetal isozymes in cancer: study of aldolase, pyruvate kinase, lactic dehydrogenase, and β-hexosaminidase. Isozymes: Curr Top Biol Med Res 5:27–75

    Google Scholar 

  293. Schrode W, Mecke D, Gebhardt R (1990) Induction of glutamine synthetase in periportal hepatocytes by cocultivation with a liver epithelial cell line. Eur J Cell Biol 53:35–41

    PubMed  Google Scholar 

  294. Schwartz-Arad D, Zajicek G, Bartfeld E (1989) The streaming liver: IV. DNA content of the hepatocyte increases with its age. Liver 9:93–99

    PubMed  Google Scholar 

  295. Schwarze PE, Pettersen EO, Shoaib MC, Seglen PO (1984) Emergence of a population of small, diploid hepatocytes during hepatocarcinogenesis. Carcinogenesis 5:1267–1277

    PubMed  Google Scholar 

  296. Schwarze PE, Pettersen EO, Tolleshang H, Seglen PO (1986) Isolation of carcinogen-induced diploid rat hepatocytes by centrifugal elutriation. Cancer Res 46:4732–4737

    PubMed  Google Scholar 

  297. Schwarze PE, Saeter G, Armstrong D, Cameron RG, Laconi E, Sarma DSR, Preat V, Seglen PO (1991) Diploid growth pattern of hepatocellular tumours induced by various carcinogenic treatments. Carcinogenesis 12:325–327

    PubMed  Google Scholar 

  298. Scott RE, Maercklein PB (1985) An initiator of carcinogenesis selectively and stably inhibits stem cell differentiation: a concept that initiation of carcinogenesis involves multiple phases. Proc Natl Acad Sci USA 82:2995–2999

    PubMed  Google Scholar 

  299. Scott RJ, Chakraborty S, Sell S, Hunt JM, Dunsford HA (1989) Change in the ploidy state of rat liver cells during chemical hepatocarcinogenesis and its relationship to the increased expression of α-fetoprotein. Cancer Res 49:6085–6090

    PubMed  Google Scholar 

  300. Seglen PO, Gerlyng P (1990) Growth-related alternations during liver carcinogenesis: effect of promoters. Environ Health Perspect 88:197–205

    PubMed  Google Scholar 

  301. Seglen PO, Saeter G, Schwarze PE (1988) Nuclear alterations during hepatocarcinogenesis: promotion by 2-acetylaminofluorene. In: Roberfroid BM, Préat V (eds) Experimental hepatocarcinogenesis. Plenum, New York, pp 221–229

    Google Scholar 

  302. Seki S, Sakagudie H, Kawakita N, Yanai A, Kim K, Mizoguchi Y, Kobayashi K (1990) Identification and fine structure of proliferating hepatocytes in malignant and nonmalignant liver diseases by use of a monoclonal antibody against DNA polymerase alpha. Hum Pathol 21:1020–1030

    PubMed  Google Scholar 

  303. Sell S (1990) Is there a liver stem cell? Cancer Res 50:3811–3815

    PubMed  Google Scholar 

  304. Sell S, Dunsford HA (1989) Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am J Pathol 134:1347–1363

    PubMed  Google Scholar 

  305. Sell S, Leffert HL (1982) An evaluation of cellular lineages in the pathogenesis of experimental hepatocellular carcinoma. Hepatology 2:77–86

    PubMed  Google Scholar 

  306. Sell S, Salman J (1984) Light- and electron-microscopic autoradiographic analysis of proliferating cells during the early stages of chemical hepatocarcinogenesis in the rat induced by feedingN-2-fluorenylacetamide in a choline-deficient diet. Am J Pathol 114:287–300

    PubMed  Google Scholar 

  307. Sell S, Osborn K, Leffert HL (1981) Autoradiography of “oval cells” appearing rapidly in the livers of rats fedN-2-fluorenylacetamide in a choline devoid diet. Carcinogenesis 2:7–14

    PubMed  Google Scholar 

  308. Sell S, Becker F, Leffert H, Osborn K, Salman J, Lombardi B, Shinozuka H, Reddy J, Rooslarti E, Sala-Trepati J (1983) Alphafetoprotein as a marker for early events and carcinoma development during chemical carcinogenesis. In: Milman H, Sell S (eds) Application of biological markers to carcinogen testing. Plenum, New York, pp 271–293

    Google Scholar 

  309. Sell S, Hunt JM, Knoll BJ, Dunsford HA (1987) Cellular events during hepatocarcinogenesis in rats and the question of premalignancy. Adv Cancer Res 48:37–111

    PubMed  Google Scholar 

  310. Sell S, Hunt JM, Dunsford HA, Chisari FV (1991) Synergy between hepatitis B virus expression and chemical hepatocarcinogens in transgenic mice. Cancer Res 51:1278–1285

    PubMed  Google Scholar 

  311. Shah KD, Gerber MA (1989) Development of intrahepatic bile ducts in humans. Immunohistochemical study using monoclonal cytokeratin antibodies. Arch Pathol Lab Med 113:1135–1138

    PubMed  Google Scholar 

  312. Shah KD, Gerber MA (1990) Development of intrahepatic bile ducts in humans. Possible role of laminin. Arch Pathol Lab Med 113:1135–1138

    Google Scholar 

  313. Shiojiri N (1984) The origin of intrahepatic bile duct cells in the mouse. J Embryol Exp Morphol 79:25–39

    PubMed  Google Scholar 

  314. Shiojiri N, Lemire JM, Fausto N (1991) Cell lineages and oval cell progenitors in rat liver development. Cancer Res 51:2611–2620

    PubMed  Google Scholar 

  315. Sinkovics JG (1990) The earliest concept of the “hybridoma principle” recognized in 1967–1968. In: Vaeth JE, Meyer JL (eds) The present and future role of monoclonal antibodies in the management of cancers. Karger, Basel, pp 18–31

    Google Scholar 

  316. Sirica AE (1989) Oncodevelopmental expression and neoplasia. In: Sirica AE (ed) Pathobiology of neoplasia. Plenum, New York, pp 419–434

    Google Scholar 

  317. Sirica AE, Cihla HP (1984) Isolation and partial characterizations of oval and hyperplastic bile ductular cell-enriched populations from the livers of carcinogen and noncarcinogentreated rats. Cancer Res 44:3454–3466

    PubMed  Google Scholar 

  318. Sirica AE, Mathis GA, Sano N, Elmore LW (1990) Isolation, culture and transplantation of intrahepatic biliary epithelial cells and oval cells. Pathobiology 58:44–64

    PubMed  Google Scholar 

  319. Slack JMW (1986) Epithelial metaplasia and the second anatomy. Lancet 2:268–270

    PubMed  Google Scholar 

  320. Slott PA, Liu MH, Tavoloni N (1990) Origin, pattern and mechanism of bile duct proliferation following biliary obstruction in the rat. Gastroenterology 99:466–477

    PubMed  Google Scholar 

  321. Solt DB, Medline A, Farber E (1977) Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. Am J Pathol 88:595–610

    PubMed  Google Scholar 

  322. Stehr CM, Myers MS (1990) The ultrastructure and histology of cholangiocellular carcinomas in English sole (Parophrys vetulus) from Puget Sound, Washington. Toxicol Pathol 18:362–372

    PubMed  Google Scholar 

  323. Steinberg P, Hacker HJ, Dienes HP, Oesch F, Bannasch P (1991) Enzyme histochemical and immunohistochemical characterization of oval and parenchymal cells proliferating in livers of rats fed a choline-deficient/DL-ethionine-supplemented diet. Carcinogenesis 12:225–231

    PubMed  Google Scholar 

  324. Steiner JW, Carruthers JS (1961) Studies on the fine structure of the terminal branches of the biliary tree: I. The morphology of normal bile canaliculi, bile pre-ductules (ducts of Hering) and bile ductules. Am J Pathol 38:640–649

    Google Scholar 

  325. Stewart HL (1964) Morphology, origin and fate of so-called pseudotubules of the liver. Acta Unio Int Contra Cancrum 20:577–579

    PubMed  Google Scholar 

  326. Stewart HL (1975) Comparative aspects of certain cancers. In: Becker FF, Frederick F (eds) Cancer, vol 4. Plenum, New York, pp 303–374

    Google Scholar 

  327. Stewart HL, Snell KC (1957) The histopathology of experimental tumors of the liver in the rat: A critical review of the histopathogenesis. Acta Unio Int Contra Cancrum 13:770

    PubMed  Google Scholar 

  328. Stosiek P, Kasper M, Karsten U (1990) Expression of cytokeratin 19 during human liver organogenesis. Liver 10:59–63

    PubMed  Google Scholar 

  329. Strom SC, Faust JB (1990) Oncogene activation and hepatocarcinogenesis. Pathobiology 58:153–167

    PubMed  Google Scholar 

  330. Styles JA, Kelly M, Elcombe CR (1987) A cytological comparison between regeneration, hyperplasia and early neoplasia in the rat liver. Carcinogenesis 8:391–399

    PubMed  Google Scholar 

  331. Styles JA, Bybee A, Pritchard NR, Kelly MD (1990) Studies on the hyperplastic responsiveness of binucleated rat hepatocytes. Carcinogenesis 11:1149–1152

    PubMed  Google Scholar 

  332. Svoboda D, Reddy J (1975) Some effects of chemical carcinogens on cell organelles. In: Becker FF (ed) Cancer, vol 1. Plenum, New York, pp 289–322

    Google Scholar 

  333. Svoboda D, Grady HJ, Higginson J (1966) Alfatoxin B1 injury in rat and monkey liver. Am J Pathol 49:1023–1051

    PubMed  Google Scholar 

  334. Takahashi H, Oyamada M, Fujimoto Y, Satoh MI, Hattori A, Dempo K, Mori M, Tanaka T, Watabe H, Masuda R, Yoshida MC (1988) Elevation of serum alpha-fetoprotein and proliferation of oval cells in the livers of LEC rats. Jpn J Cancer Res (Gann) 79:821–827

    Google Scholar 

  335. Takahashi H, Enomoto K, Nakajima Y, Mori M (1990) High sensitivity of the LEC rat liver to the carcinogenic effect of diethylnitrosamine. Cancer Lett 51:247–250

    PubMed  Google Scholar 

  336. Tatematsu M, Katu T, Medline A, Eriksson L, Roomi M, Sharma RN, Murray RK, Farber E (1983) Markers of liver neoplasia — real or fictional? In: Milman HA, Sell S (eds) Application of biological markers to carcinogen testing. Plenum, New York, pp 25–42

    Google Scholar 

  337. Tatematsu M, Ho RH, Kaku T, Ekem JK, Farber E (1984) Studies on the proliferation and fate of oval cells in the liver of rats treated with 2-acetylaminofluorene and partial hepatectomy. Am J Pathol 114:418–430

    PubMed  Google Scholar 

  338. Tatematsu M, Kaku T, Medline A, Farber E (1985) Intestinal metaplasia as a common option of oval cells in relation to cholangiofibrosis in liver of rats exposed to 2-acetylaminofluorene. Lab Invest 52:354–362

    PubMed  Google Scholar 

  339. Tavoloni N Slott PA (1991) In reply to Zajicek G: hepatocytes and intrahepatic bile duct epithelium originate from a common stem cell. Gastroenterology 100:583

    PubMed  Google Scholar 

  340. Terada T, Nakanuma Y (1990) Pathological observations of intrahepatic peribiliary glands in 1000 consecutive autopsy livers: II. A possible source of cholangiocarcinoma. Hepatology 12:92–97

    PubMed  Google Scholar 

  341. Terao K, Nakano M (1974) Cholangiofibrosis induced by short-term feeding of 3′-methyl-4-(dimethylamino)azobenzene: an electron microscopic observation. Gann 65:249–260

    PubMed  Google Scholar 

  342. Thaler H (1987) Leberkrankheiten, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  343. Thamavit W, Kongkanunin R, Tiwawech D, Moore MA (1987) Level ofOposthorchis infestation and carcinogen dosedependence of cholangiocarcinoma induction in Syrian golden hamsters. Virchows Arch [B] 54:52–58

    Google Scholar 

  344. Thomas C (1961) Zur Morphologie der bei Diäthylnitrosamin erzeugten Leberveränderungen und Tumoren bei der Ratte. Z Krebsforsch 64:224–233

    PubMed  Google Scholar 

  345. Thung SN (1990) The development of proliferating ductular structures in liver disease. An immunohistochemical study. Arch Pathol Lab Med 114:407–411

    PubMed  Google Scholar 

  346. Thung SN, Gerber MA, Popper H (1984) Basic morphologic patterns of viral hepatitis A, B, non-A, non-B, and delta agent in animal and man. In: Chisari FV (ed) Advances in hepatitis research. New York, pp 293–302

  347. Triolo V (1965) Nineteenth century foundations of cancer research. Cancer Res 25:75–106

    PubMed  Google Scholar 

  348. Trosko JE, Chang CC (1989) Stem cell theory of carcinogenesis. Toxicology Lett 49:283–295

    Google Scholar 

  349. Trosko JE, Chang CC, Madhukar BV (1990) Cell-to-cell communication: relationship of stem cells to the carcinogenic process. In: Stevenson DE, Popp JA, Ward JM, McClain RM, Slaga TU, Pitot HC (eds) Mouse liver carcinogenesis: mechanisms and species comparisons. Liss, New York, pp 259–276

    Google Scholar 

  350. Tsao M-S, Grisham JW (1987) Hepatocarcinomas, cholangiocarcinomas, and hepatoblastomas produced by chemically transformed cultured rat liver epithelial cells. A light- and electron-microscopic analysis. Am J Pathol 127:168–181

    PubMed  Google Scholar 

  351. Tsao M-S, Smith JD, Nelson KG, Grisham JW (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of “oval” cells. Exp Cell Res 154:38–52

    PubMed  Google Scholar 

  352. Tsao M-S, Grisham JW, Nelson KG, Smith JD (1985) Phenotypic and karyotypic changes induced in cultured rat hepatic epithelial cells that express the “oval” cell phenotype by exposure toN-methyl-N′-nitro-N-nitrosoguanidine. Am J Pathol 118:306–315

    PubMed  Google Scholar 

  353. Uriel J (1976) Cancer, retrodifferentiation, and the myth of Faust. Cancer Res 36:4269–4275

    PubMed  Google Scholar 

  354. Vandersteenhoven AM, Burchette J, Michalopoulos G (1990) Characterization of ductular hepatocytes in end-stage cirrhosis. Arch Pathol Lab Med 114:403–406

    PubMed  Google Scholar 

  355. Van Eyken P, Sciot R, Desmet V (1988) Intrahepatic bile duct development in the rat: a cytokeratin-immunohistochemical study. Lab Invest 59:52–59

    PubMed  Google Scholar 

  356. Van Eyken P, Sciot RAF, Desmet VJ (1991) Immunocytochemistry of cytokeratins in primary human liver tumors. AP-MIS, [Suppl] 23:77–85

    Google Scholar 

  357. Van Eyken P, Sciot R, Paterson A, Callea F, Kew MC, Desmet VJ (1988) Cytokeratin expression in hepatocellular carcinoma. Hum Pathol 19:562–568

    PubMed  Google Scholar 

  358. Van Eyken P, Sciot R, Desmet VJ (1989) A cytokeratin immunohistochemical study of cholestatic liver disease: evidence that hepatocytes can express “bile duct-type” cytokeratins. Histopathology 15:125–135

    PubMed  Google Scholar 

  359. Van Eyken P, Sciot R, Callea F, Desmet VJ (1989) A cytokeratin-immunohistochemical study of focal nodular hyperplasia of the liver: further evidence that ductular metaplasia of hepatocytes contributes to ductular “proliferation”. Liver 9:372–377

    PubMed  Google Scholar 

  360. Van Eyken P, Sciot R, Callea F, Ramaekkers F, Schaart G, Desmet VJ (1990) A cytokeratin-immunohistochemical study of hepatoblastoma. Hum Pathol 21:302–308

    PubMed  Google Scholar 

  361. Van Eyken P, Sciot R, Brock P, Casteels-van Daele M, Ramaekers FCS, Desmet VJ (1990) Abundant expression of cytokeratin 7 in fibrolamellar carcinoma of the liver. Histopathology 17:101–107

    PubMed  Google Scholar 

  362. Van Noorden CJF, Vogels IMC, Fronik G, Bhattacharya RD (1984) Ploidy class-dependent variations during 24 h of glucose-6-phosphate and succinate dehydrogenase activity and single-stranded RNA content in isolated rat hepatocytes. Exp Cell Res 155:381–388

    PubMed  Google Scholar 

  363. Van Noorden CJF, Vogels IMC, Houtkooper JM, Fronik G, Tas J, James J (1984) Glucose-6-phosphate dehydrogenase activity in individual rat hepatocytes of different ploidy classes: I. Development during postnatal growth. Eur J Cell Biol 33:157–162

    PubMed  Google Scholar 

  364. Van Noorden CJF, Bhattacharya RD, Vogels IMC, Fronik G (1984) Glucose-6-phosphate dehydrogenase activity in individual rat hepatocytes of different ploidy classes: II. Time-dependent variations during 24 h. Chronobiology 11:131–138

    Google Scholar 

  365. Van Noorden CJF, Vogels IMC, Fronik G, Houtkooper JM, James J (1985) Ploidy class-dependent metabolic changes in rat hepatocytes after partial hepatectomy. Exp Cell Res 161:551–557

    PubMed  Google Scholar 

  366. Van Ravenzwaay B, Kunz W (1988) Quantitative aspects of accelerated nuclear polyploidization and tumour formation in dieldrin treated CF-1 mouse liver. Br J Cancer 58:52–56

    PubMed  Google Scholar 

  367. Venetianer A, Schiller DL, Magin Th, Tranke WW (1983) Cessation of cytokeratin expression in a rat hepatoma cell line lacking differentiated functions. Nature 305:730–733

    PubMed  Google Scholar 

  368. Wagner E (1861) Die Structur des Leberkrebses. Arch Heilk 2:209–229

    Google Scholar 

  369. Waldeyer HWG (1868) Bacteriencolonien mit Pseudomelanose in der Leber. (Acute Atrophie) Virchows Arch Pathol Anat Physiol Klin Med 43:533–540

    Google Scholar 

  370. Wang J, Dhillon AP, Sankey EA, Wightman AK, Lewin JF, Scheuer PJ (1991) “Neuroendocrine” differentiation in primary neoplasms of the liver. J Pathol 163:61–67

    PubMed  Google Scholar 

  371. Wanless IR, Medline A (1982) Role of estrogens as promoters of hepatic neoplasia. Lab Invest 46:313–320

    PubMed  Google Scholar 

  372. Wanson J-C, Bernaert D, Penasse W, Mosselmans R, Bannasch P (1980) Separation in distinct subpopulations by elutriation of liver cells following exposure of rats toN-nitrosomorpholine. Cancer Res 40:459–471

    PubMed  Google Scholar 

  373. Watt FM (1991) Cell culture models of differentiation. FASEB J 5:287–294

    PubMed  Google Scholar 

  374. Weinstein IB (1981) Current concepts and controversies in chemical carcinogenesis. J Supramol Struct Cell Biochem 17:99–120

    PubMed  Google Scholar 

  375. Wells HG (1905) Primary carcinoma of the liver. Am J Med Sci 126:403–417

    Google Scholar 

  376. Williams GM (1980) The pathogenesis of rat liver cancer caused by chemical carcinogens. Biochim Biophys Acta 605:167–189

    PubMed  Google Scholar 

  377. Williams GM, Watanabe K (1978) Quantitative kinetics of development ofN-2-fluorenylacetamide-induced, altered (hyperplastic) hepatocellular foci resistant to iron accumulation and of their reversion or persistence following removal of carcinogen. J Natl Cancer Inst 61:113–121

    PubMed  Google Scholar 

  378. Williams GM, Klaiber M, Farber E (1977) Differences in growth of transplants of liver, liver hyperplastic nodules and hepatocellular carcinomas in the mammary fat pad. Am J Pathol 89:379–390

    PubMed  Google Scholar 

  379. Williams GM, Ohmori T, Watanabe K (1980) The persistence and phenotypic stability of transplanted rat liver neoplastic nodules. Am J Pathol 99:1–12

    PubMed  Google Scholar 

  380. Wilson EB (1896) The cell in development and inheritance. MacMillan, London

    Google Scholar 

  381. Wilson JW, Leduc EH (1958) Role of cholangioles in restoration of the liver of the mouse after dietary injury. J Pathol Bacteriol 76:441–449

    PubMed  Google Scholar 

  382. Winokur TS, Lieberman MW (1990) Immunofluorescent analysis of gamma-glutamyl transpeptidase and glutathione-S-transferase-P during the initial phase of experimental hepatocarcinogenesis. Carcinogenesis 11:365–369

    PubMed  Google Scholar 

  383. Wright N, Alison M (1984) The biology of epithelial cell populations, vol 2. Clarendon Press, Oxford, pp 880–980

    Google Scholar 

  384. Wu PC, Ma L, Gibson JB, Hirai H, Tsukada Y (1981) Serum alpha-fetoprotein in rats after ligation of the common bile duct: relation to ductular cell (oval cell) proliferation. J Pathol 133:61–74

    PubMed  Google Scholar 

  385. Yamamoto K, Phillips MJ (1984) A hitherto unrecognized bile ductular plexus in normal rat liver. Hepatology 4:381–385

    PubMed  Google Scholar 

  386. Yang SS, Zhang K, Vieira W, Taub JV, Zeilstra-Ryalls JH, Somerville RI (1990) A human hepatocellular carcinoma 3.0-kilobase DNA sequence tranforms both rat liver cells and NIH-3T3 fibroblasts and encodes a 52-kilodalton protein. Cancer Res [Suppl] 50:5658s-5667s

    PubMed  Google Scholar 

  387. Yaswen P, Hayner NT, Fausto N (1984) Isolation of oval cells by centrifugal elutriation and comparison with other cell types purified from normal and preneoplastic livers. Cancer Res 44:324–331

    PubMed  Google Scholar 

  388. Yokota K, Singh U, Shinozuka H (1990) Effects of a choline-deficient diet and a hypolipidemic agent on single glutathione S-transferase placental form-positive hepatocytes in rat liver. Jpn J Cancer Res 81:129–134

    PubMed  Google Scholar 

  389. Yoshida MC, Masuda R, Sasaki M, Takeidu N, Kobayashi H, Dempo K, Mori M (1987) New mutation causing hereditary hepatitis in the laboratory rat. J Hered 78:361–365

    PubMed  Google Scholar 

  390. Yoshimura H, Harris R, Yokayma S, Takahashi S, Sells MA, Pann SF, Lombardi B (1983) Anaplastic carcinomas in nude mice and in original donor strain rats inoculated with cultured oval cells. Am J Pathol 110:322–332

    PubMed  Google Scholar 

  391. Zajicek G (1984) Neoplasia — a stem cell pathology. Med Hypotheses 13:125–136

    PubMed  Google Scholar 

  392. Zajicek G (1991) Hepatocytes and intrahepatic bile duct epithelium originate from a common stem cell. Gastroenterology 100:582–583

    PubMed  Google Scholar 

  393. Zajicek G, Oren J, Weinreb M (1985) The streaming liver. Liver 5:293–300

    PubMed  Google Scholar 

  394. Zajicek G, Ariel I, Arber N (1988) The streaming liver: II. Hepatocyte life history. Liver 8:80–87

    PubMed  Google Scholar 

  395. Zajicek G, Ariel I, Arber N (1988) The streaming liver: III. Littoral cells accompany the streaming hepatocyte. Liver 8:213–218

    PubMed  Google Scholar 

  396. Zerban H, Rabes HM, Bannasch P (1989) Sequential changes in growth kinetics and cellular phenotype during hepatocarcinogenesis. J Cancer Res Clin Oncol 115:329–334

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The “Journal of Cancer Research and Clinical Oncology” publishes in loose succession “Editorials” and “Guest editorials” on current and/or controversial problems in experimental and clinical oncology. These contributions represent exclusively the personal opinion of the author The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aterman, K. The stem cells of the liver — a selective review. J Cancer Res Clin Oncol 118, 87–115 (1992). https://doi.org/10.1007/BF01187498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187498

Key words

Navigation