Skip to main content
Log in

The evolution of muscular parvalbumins investigated by the maximum parsimony method

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Phylogenetic trees requiring the lowest sum of nucleotide replacements and gene duplicative events were constructed from the amino acid sequence data on ten gnathostome parvalbumins (PAR) and two related myofibrillar proteins troponin-C (TNC) and myosin alkali-light-chain (ALC). The origin and differentiation of the structural domains within these proteins were also investigated by the maximum parsimony method and by an alignment statistic for identifying evolutionarily related protein sequences. The results suggest, in agreement with the Weeds-McLachlan model, that tandem duplications in a precursor gene caused a primordial one-domain polypeptide (consisting of two helices with a calcium binding region in between) to double and then quadruple in size. Duplications of the gene coding for this four domain (I–II–III–IV) protein in an early metazoan, pre-gnathostome lineage gave rise to the separate loci for TNC, ALC, and PAR. TNC, which alone retained the Ca-binding function in each of its four domains, evolved much more slowly than either the ALC or PAR lineages. In the PAR lineage the I–II–III–IV structure was degraded, presumably by a partial gene deletion, to the II–III–IV structure during descent to the gnathostome ancestor of parvalbumins. Also during this period the mid region in domain II lost its Ca-binding function and, as it did so, evolved at an accelerated rate over other regions, a pattern indicative of positive selection for a change in function. In turn, from the gnathostome ancestor to the present, the mid regions of domains III and IV, which each retained Ca-bindung function, evolved much more slowly than other regions, a pattern indicative of stabilizing selection for preservation of function. Between the gnathostome and teleost-tetrapod ancestor a gene duplication separated the parvalbumins into anα-lineage and aβ-lineage. During this early vertebrate period PAR genes evolved at the extremely fast rate of 89 nucleotide replacements per 100 codons per 108 years (i.e. 89 NR %), but from the teleost-tetrapod ancestor to the present, bothα- andβ-PAR lineages evolved at a much slower rate, about 8 NR %. The use ofβ-parvalbumins as phylogenetic markers was complicated by presumptive evidence that paralogous (i.e. duplication dependent) gene lineages occur within this group. As a final point, in the genealogy of TNC, ALC, and PAR lineages, a non-random pattern of nucleotide replacements was observed between the reconstructed ancestral and descendant mRNA sequences. The pattern was similar to that observed for other protein genealogies and seems to reflect a bias in the genetic code for guanine to adenine and adenine to guanine transitions (especially at the first nucleotide position of the RNA codons) to produce amino acid substitutions which are compatible with the preservation of protein three-dimensional structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Capony, J.-P., Ryden, L., Demaille, J., Pechère, J.-F. (1973). Eur. J. Biochem. 32, 97

    Google Scholar 

  • Capony, J.-P., Rochat, H., Pina, C., Pechère, J.-F. (1974). C.R. Acad. Sci. (Paris) 279 D, 1789

    Google Scholar 

  • Capony, J.-P., Pina, C., Pechère, J.-F. (1975a). C.R. Acad. Sci. (Paris) 280, 1615

    Google Scholar 

  • Capony, J.-P., Demaille, J., Pechère, J.-F. (1975b). Eur. J. Biochem. 56, 215

    Google Scholar 

  • Coffee, C.J., Bradshaw, R.A. (1973). J. Biol. Chem. 248, 3305

    Google Scholar 

  • Coffee, C.J., Bradshaw, R.A., Kretsinger, R.H. (1974). Advan. Exptl. Med. Biol. 48, 211

    Google Scholar 

  • Collins, J.H. (1974). Biochem. Biophys. Res. Commun. 58, 30

    Google Scholar 

  • Chou, P.Y., Fasman, G.D. (1974a). Biochemistry 13, 211

    Google Scholar 

  • Chou, P.Y., Fasman, G.D. (1974b). Biochemistry 13, 222

    Google Scholar 

  • Dayhoff, M.O. (1972). Atlas of protein sequence and structure, Vol. 5. Washington, D.C.: National Biomedical Research Foundation

    Google Scholar 

  • Demaille, J., Dutruge, E., Eisenberg, E., Capony, J.-P., Pechère, J.-F. (1974). FEBS-Letters 42, 173

    Google Scholar 

  • Fitch, W.M. (1971). Syst. Zool. 20, 406

    Google Scholar 

  • Fitch, W.M., Margoliash, E. (1967). Science 155, 279

    Google Scholar 

  • Frank, G., Weeds, A.G. (1974). Eur. J. Biochem. 44, 317

    Google Scholar 

  • Gerday, C. (1974). Abstr. 9th FEBS Meeting (Budapest) p. 21

  • Goodman, M. (1976). Towards a genealogical description of the Primates. In: Molecular anthropology, M. Goodman, R.E. Tashian, eds. New York: Plenum

    Google Scholar 

  • Goodman, M., Moore, G.W., Barnabas, J., Matsuda, G. (1974). J. Mol. Evol. 3, 1

    Google Scholar 

  • Goodman, M., Moore, G.W., Matsuda, G. (1975). Nature 253, 603

    Google Scholar 

  • Holmquist, R., Jukes, T.H., Moise, H., Goodman, M., Moore, G.W. (1976). J. Mol. Biol. 105, 39

    Google Scholar 

  • Joassin, L. (1974). Abstr. 9th FEBS Meeting (Budapest) p. 20

  • Kretsinger, R.H. (1972). Nat. New Biol. 240, 85

    Google Scholar 

  • Moore, G.W. (1976). Proof for the maximum parsimony (“red king”) algorithm. In: Molecular anthropology, M. Goodman, R.E. Tashian, eds. New York: Plenum

    Google Scholar 

  • Moore, G.W., Barnabas, J., Goodman, M. (1973). J. Theoret. Biol. 38, 459

    Google Scholar 

  • Moore, G.W., Goodman, M., Callahan, C., Holmquist, R., Moise, H. (1976). J. Mol. Biol. 105, 15

    Google Scholar 

  • Moore, G.W., Goodman, M. (1977). J. Mol. Evol. 9, 121

    Google Scholar 

  • Peacock, D., Boulter, D. (1975). J. Mol. Biol. 95, 513

    Google Scholar 

  • Pechère, J.-F., Capony, J.-P., Ryden, L. (1971). Eur. J. Biochem. 23, 421

    Google Scholar 

  • Pechère, J.-F., Capony, J.-P., Demaille, J. (1973). Syst. Zool. 22, 533

    Google Scholar 

  • Piront, A., Gosselin-Rey, C. (1975). Biochem. Syst. Ecol. 3, 251

    Google Scholar 

  • Potter, J.D., Gergely, J. (1974). Fed. Proc. 33, 1465

    Google Scholar 

  • Romer, A.S. (1966). Vertebrate paleontology. Chicago: The University of Chicago Press

    Google Scholar 

  • Romero-Herrera, A.E., Castillo, D., Lehman, H. (1976a). J. Mol. Evol. 8, 251–270

    Google Scholar 

  • Romero-Herrera, A.E., Lehman, H., Joysey, K.A., Friday, A.E. (1976b). Evolution of myoglobin amino acid sequences in primates and other vertebrates. In: Molecular anthropology, M. Goodman, R.E. Tashian, eds. New York: Plenum

    Google Scholar 

  • Sokal, R.R., Michener, C.D. (1958). Kansas Univ. Sci. Bull. 38, 1049

    Google Scholar 

  • Tashian, R.E., Goodman, M., Ferrell, R.E., Tanis, R.J. (1976). Evolution of carbonic anhydrase in primates and other mammals. In: Molecular anthropology, M. Goodman, R.E. Tashian, eds. New York: Plenum

    Google Scholar 

  • Tufty, R.M., Kretsinger, R.H. (1975). Science 187, 167

    Google Scholar 

  • Weeds, A.G., McLachlan, A.D. (1974). Nature 252, 646

    Google Scholar 

  • Young, J.Z. (1962). The life of the vertebrates, 2nd ed. Oxford: University Press

    Google Scholar 

  • Zuckerkandl, E. (1976). Programs of gene action and progressive evolution. In: Molecular anthropology, M. Goodman, R.E. Tashian, eds. New York: Plenum

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, M., Pechére, JF. The evolution of muscular parvalbumins investigated by the maximum parsimony method. J Mol Evol 9, 131–158 (1977). https://doi.org/10.1007/BF01732745

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732745

Key words

Navigation