Skip to main content
Log in

Morphological factors influencing transepithelial permeability: A model for the resistance of theZonula Occludens

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Epithelial cells are joined at their apical surfaces byzonulae occludentes. Claude and Goodenough (1973) demonstrated a correlation between the structure of thezonula occludens as seen in freeze-fracture preparations and the passive electrical permeability of several simple epithelia. In epithelia with high transepithelial resistance, thezonula occludens consisted of many strands. In epithelia with low transepithelial resistance thezonula occludens was much reduced, sometimes consisting of only one strand.

Evidence is reviewed here that indicates that in a number of simple epithelia the structure of thezonula occludens is largely responsible for the magnitude of transepithelial conductance. An equation is derived relating transepithelial junctional resistance to the number of junctional strands:R=R min p −n whereR is the transepithelial resistance of thezonula occludens,R min is the minimum resistance of the junction (as when there areno strands in the zonula occludens),p is the probability a given strand is “open” andn is the number of strands in the junction. Using published experimental values ofR andn for different epithelia, the calculated value ofp was found to be as high as 0.4, which suggests that the strands in thezonula occludens are remarkably labile.

Other morphological parameters relevant to transepithelial permeability are also considered, such as the width and depth of the intercellular spaces, and the size of the epithelial cells themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barry, R.J.C., Smyth, D.H., Wright, E.M.. 1965. Short circuit current and solute transfer by rat jejunum.J. Physiol. (London) 181:410

    Google Scholar 

  2. Berridge, M.J., Oschman, J.L. 1972.Transporting Epithelia. Academic Press, New York

    Google Scholar 

  3. Bindslev, N., Tormey, J. McD., Wright, E.M. 1974. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium.J. Membrane Biol. 19:357

    Google Scholar 

  4. Boulpaep, E.L. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular transport pathways. In: Electrophysiology of Epithelial Cells. Symposia Medica Hoechst, 1970. G. Giebisch, editor. Schattauer Verlag, Stuttgart

    Google Scholar 

  5. Boulpaep, E.L., Seely, J.F. 1971. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney.Am. J. Physiol. 221:1084

    Google Scholar 

  6. Civan, M.M., Frazier, H.S. 1968. The site of the stimulatory action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589

    Google Scholar 

  7. Claude, P. 1968. An electron microscopic study of the urinary tubules ofNecturus maculosus. Ph.D. Thesis, University of Pennsylvania. University Microfilms, (No. 69–15,044) Ann Arbor

    Google Scholar 

  8. Claude, P., Goodenough, D.A. 1973. Fracture faces ofzonulae occludentes from “tight” and “leaky” epithelia.J. Cell Biol. 58:390

    Google Scholar 

  9. Dalton, A.J., Haguenau, F. 1967. Ultrastructure of the Kidney. Academic Press, New York and London

    Google Scholar 

  10. DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12: 101

    Google Scholar 

  11. Erlij, D., Martínez-Palomo, A. 1972. Opening of tight junctions in frog skin by hypertonic urea solutions.J. Membrane Biol. 9:229

    Google Scholar 

  12. Friend, D.S., Gilula, N.B. 1972. Variations in tight and gap junctions in mammalian tissues.J. Cell Biol. 53:758

    Google Scholar 

  13. Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318

    Google Scholar 

  14. Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  15. Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9

    Google Scholar 

  16. Graham, R.C., Karnovsky, M.J. 1966. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique.J. Histochem. Cytochem. 14:291

    Google Scholar 

  17. Higgins J.T., Jr., Cesaro, L., Gebler, B., Frömter, E. 1975. Electrical properties of amphibian urinary bladder epithelia.Pfluegers Arch. 358:41

    Google Scholar 

  18. Humbert, F., Grandchamp, A., Pricam, C., Perrelet, A., Orci, L. 1976. Morphological changes in tight junctions ofNecturus maculosus proximal tubules undergoing saline diuresis.J. Cell Biol. 69:90

    Google Scholar 

  19. Katz, B., Miledi, R. 1972. The statistical nature of the acetylcholine potential and its molecular components.J. Physiol. (London) 224:665

    Google Scholar 

  20. Kaye, G.I., Wheeler, H.O., Whitlock, R.T., Lane, N. 1966. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscope study.J. Cell Biol. 30: 237

    Google Scholar 

  21. Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41

    Google Scholar 

  22. Machen, T.E., Erlij, D., Wooding, F.B.P. 1972. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine.J. Cell Biol. 54:302

    Google Scholar 

  23. Magleby, K.L., Stevens, C.F. 1972. A quantitative description of end-plate currents.J. Physiol. (London) 223:173

    Google Scholar 

  24. Martínez-Palomo, A., Erlij, D. 1975. Structure of tight junctions in epithelia with different permeability.Proc. Nat. Acad. Sci. (USA) 72:4487

    Google Scholar 

  25. Miller, F. 1960. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney.J. Biophys. Biochem. Cytol. 8:689

    Google Scholar 

  26. Moreno, J.H., Diamond, J. M. 1974. Discrimination of monovalent inorganic cations by “tight” junctions of gallbladder epithelium.J. Membrane Biol. 15:277

    Google Scholar 

  27. Pricam, C., Humbert, F., Perrelet, A., Orci, L. 1974. A freeze-etch study of the tight junctions of the rat kidney tubules.Lab. Invest. 30:286

    Google Scholar 

  28. Rawlins, F.A., González, E., Pérez-González, M., Whittembury, G. 1975. Effect of transtubular osmotic gradients on the paracellular pathway in toad kidney proximal tubule.Pfluegers Arch. 353:287

    Google Scholar 

  29. Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium: Intercellular coupling and transepithelial cellular and shunt conductance.J. Gen. Physiol. 64:1

    Google Scholar 

  30. Rodewald, R. 1973. Intestinal transport of antibodies in the newborn rat.J. Cell Biol. 58:189

    Google Scholar 

  31. Smulders, A.P., Tormey, J. McD., Wright, E.M. 1972. The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder.J. Membrane Biol. 7:164

    Google Scholar 

  32. Staehelin, L.A. 1974. Structure and function of intercellular junctions.Int. Rev. Cytol. 39:191

    Google Scholar 

  33. Wade, J.B., Karnovsky, M.J. 1974. Fracture faces of osmotically disruptedzonulae occludentes.J. Cell Biol. 62:344

    Google Scholar 

  34. Walser, M. 1970. Role of edge damage in sodium permeability of toad bladder and a means of avoiding it.Am. J. Physiol. 219:252

    Google Scholar 

  35. Wilson, T.H. 1962. Intestinal Absorption. W.B. Saunders, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claude, P. Morphological factors influencing transepithelial permeability: A model for the resistance of theZonula Occludens . J. Membrain Biol. 39, 219–232 (1978). https://doi.org/10.1007/BF01870332

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870332

Keywords

Navigation