Skip to main content
Log in

Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease

  • Intestinal Disorders, Inflammatory Bowel Disease, Immunology, And Microbiology
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation whose cellular components are capable of oxidative respiratory bursts that may result in tissue injury. Mucosal biopsies were analyzed for protein carbonyl content (POPs), DNA oxidation products [8-hydroxy-2′-deoxyguanosine (8-OHdG)], reactive oxygen intermediates (ROIs), trace metals (copper, zinc, and iron) and superoxide dismutase (Cu-Zn SOD). In Crohn's disease biopsies, there was an increase in ROIs, POPs, 8-OHdG, and iron, while decreased copper and Cu-Zn SOD activity were found in inflamed tissues compared to controls. For ulcerative colitis, there was an increase in ROIs, POPs, and iron in inflamed tissue compared to controls, while decreased zinc and copper were observed. An imbalance in the formation of reactive oxygen species and antioxidant micronutrients may be important in the pathogenesis and/or perpetuation of the tissue injury in IBD and may provide a rationale for therapeutic modulation with antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell B: Drug antixoidant effects—a basis for drug selection? Drugs 42(4):569–605, 1991

    PubMed  Google Scholar 

  2. Turrens JF, Boveris A: Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. J Biochem 191:421–427, 1980

    Google Scholar 

  3. Weiss SJ: Tissue destruction by neutrophils. N Engl J Med 320:365–376, 1989

    PubMed  Google Scholar 

  4. Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, et al: Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 328(20):1450–1456, 1993

    PubMed  Google Scholar 

  5. Suryaprabha P, Das UN, Ramesh G, Kumar KV, Kumar GS: Reactive oxygen species, lipid peroxides, and essential fatty acids in patients with rheumatoid arthritis and systemic lupus erythematosis. Prostaglandins Leukot Essent Fatty Acids 43(4):251–255, 1991

    PubMed  Google Scholar 

  6. Yoshikawa T: Free radicals and their scavengers in Parkinson's disease. Eur Neurol 33(suppl 1):60–68, 1993

    PubMed  Google Scholar 

  7. Kilgare KS, Lucchesi BR: Reperfusion injury after myocardial infarction: The role of free radicals and the inflammatory response. Clin Biochem 26(5):359–370, 1993

    PubMed  Google Scholar 

  8. Gutteridge JM: Ageing and free radicals. Med Lab Sci 49(4):313–318, 1992

    PubMed  Google Scholar 

  9. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D: Oxygen derived radicals and reperfusion injury—Davis conference, oxygen radicals and human disease. Ann Intern Med 107(4):526–545, 1987

    PubMed  Google Scholar 

  10. Otamiri T, Sjodahl R: Oxygen radicals: Their role in selected gastrointestinal disorders. Dig Dis 9(3):133–141, 1991

    PubMed  Google Scholar 

  11. Babbs CF: Oxygen radicals in ulcerative colitis. Free Radic Biol Med 13:169–181, 1992

    PubMed  Google Scholar 

  12. Emerit J, Pelletier S, Tosoni-Verlignue D, Mollet M: Phase II trial of copper zinc superoxide dismutase in the treatment of Crohn's disease. Free Radic Biol Med 7(2):145–149, 1989

    PubMed  Google Scholar 

  13. Wright JP, Mee S, Parfitt A, Marks IN, et al: Vitamin A therapy in patients with Crohn's disease. Gastroenterology 88(2):512–514, 1985

    PubMed  Google Scholar 

  14. Ahnfelt-Ronne I, Nielson OH: The antiinflammatory moiety of sulfasalazine, 5-ASA, is a radical scavenger. Agents Actions 21(1–2):191–194, 1987

    PubMed  Google Scholar 

  15. Ahnfelt-Ronne I, Haagen Nielsen O, Christensen A, Langholz E, Binder V, Riis P: Clinical evidence supporting the radical scavenger mechanism of 5-aminosalicylic acid. Gastroenterology 98:1162–1169, 1990

    PubMed  Google Scholar 

  16. Harvey RF, Bradshaw JM: A simple index of Crohn's disease activity. Lancet 1:514, 1980

    PubMed  Google Scholar 

  17. Truelove SC, Witts LJ: Cortisone in ulcerative colitis. Final report on a therapeutic trial. Br Med J 2:1041, 1955

    Google Scholar 

  18. Kirshner JB, Shorter RG: Recent developments in “nonspecific” inflammatory bowel disease. N Engl J Med 306:775–785, 837–848, 1982

    PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ. Anal Biochem 100:201, 1979

    PubMed  Google Scholar 

  20. Carney JM, Starke-Reed PE, Oliver CN, Landum RW, et al: Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compoundN-tert-butyl—phenylnitrone. Proc Natl Acad Sci USA 88:3633–3636, 1991

    PubMed  Google Scholar 

  21. Oliver CN, Starke-Reed PE, Stadtman ER, Lui GJ, et al: Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion induced injury to gerbil brain. Proc Natl Acad Sci USA 87:5144–5147, 1990

    PubMed  Google Scholar 

  22. Simmonds NJ, Allen RE, Stevens TRJ: Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology 103(1):186–196, 1992

    PubMed  Google Scholar 

  23. Keshavarzian A, Sedghi S, Kanofsky J, List T, Robinson C, Ibrahim C, Winship D: Excessive production of reactive oxygen metabolites by inflamed colon: analysis by chemiluminescence probe. Gastroenterology 103:177–185, 1992

    PubMed  Google Scholar 

  24. Kirby KS: New methods for isolation of deoxyribonucleic acids: Evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem J 66:495–504, 1957

    PubMed  Google Scholar 

  25. Floyd RA, West MS, Eneff JE, Wong PK, Tingley DT, Hogsett WE: Conditions influencing yeild and analysis of 8-hydroxy-2'-deoxyguanosine in oxidatively damaged DNA. Anal Biochem 188:155–158, 1990

    PubMed  Google Scholar 

  26. Winyard PG, Perrett D, Blake DR, Harris G, Chipman JK: Measurement of DNA oxidation products. Anal Proc 27:224–227, 1990

    Google Scholar 

  27. Shanahan F, Targan SR: Mechanisms of tissue injury in inflammatory bowel disease.In Current Topics in Gastroenterology—Inflammatory Bowel Disease. RP McDermott, WF Stenson (eds). New York, Elsevier Science Publishing, 1992, pp 77–93

    Google Scholar 

  28. Mahida YR, Wu KC, Jewell DP: Respiratory burst activity of intestinal macrophages in normal and inflammatory bowel disease. Gut 30:1362–1370, 1989

    PubMed  Google Scholar 

  29. Suematsu M, Suzuli M, Kitahora T, Miru S, Suzuki K, Hibi T, Watanabe M, Nagata H, Asakura H, Tsuchiya M: Increased respitatory burst of leeukocytes in inflammatory bowel diseases—the analysis of free radical generation by using chemiluminenscence probe. J Clin Lab Immunol 24:125–128, 1987

    PubMed  Google Scholar 

  30. Schreiber S, MacDermott RP, Raedler A, Pinnau R, Bertovich MJ, Nash GS: Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 101:1020–1030, 1991.

    PubMed  Google Scholar 

  31. Grisham MB, Granger DN: Mechanisms of neutrophil-mediated tissue injury.In Current Topics in Gastroenterology—Inflammatory Bowel Disease. RP McDermott, WF Stenson (eds). New York, Elsevier Science Publishing, 1992, pp 225–239

    Google Scholar 

  32. von Ritter C, Sekizuka E, Grisham MB, Granger DN: The chemotactic peptideN-formyl-methionyl-leucyl-phenylalanine increases mucosal permeability in the distal ileum of the rat. Gastroenterology 95:651–656, 1988

    PubMed  Google Scholar 

  33. von Ritter C, Grisham MB, Hoellwarth ME, Inauen W, Granger DN: Neutrophil-derived oxidants mediateN-formylmethionyl-leucyl-phenylalanine-induced ileitis in the rat. Gastroenterology 97:778–780, 1989

    PubMed  Google Scholar 

  34. von Ritter C, Grisham MB, Granger DN: Sulfasalazine metabolites and dapsone attenuateN-formyl-methionyl-leucylphenylalanine-induced mucosal injury in rat ileum. Gastroenterology 96:811–816, 1989

    PubMed  Google Scholar 

  35. Skoglund G, Cotgreave I, Rincon J, Patarroyo M, Ingelman-Sundberg M: H2O2 activates CD116/Cd18-dependent cell adhesion. Biochem Biophys Res Commun 157:443–449, 1988

    PubMed  Google Scholar 

  36. Sekizuka E, Benoit JN, Grisham MB, Granger DN: Dimethylsulfoxide attenuates leukocyte adherence in mesenteric venules. Am J Physiol 256:H594-H597, 1989

    PubMed  Google Scholar 

  37. Stevens C, Walz G, Chandler S, Lipman ML, Zanker B, Muggia A, Antonioli D, Peppercorn MA, Strom TB: Tumor necrosis factor-α, interleukin-1β, and interleukin-6 in inflammatory bowel disease. Dig Dis Sci 37(6):818–826, 1992

    PubMed  Google Scholar 

  38. Issacs K, Sartor RB, Haskill JS: Cytokine messenger RNA profiles in inflammatory bowel disease mucosa detected by polymerase chain reaction amplification. Gastroenterology 103(5):1587–1595, 1992

    PubMed  Google Scholar 

  39. Chaudri G, Clark IA: Reactive oxygen species facilitate thein vitro andin vivo lipopolysaccharide-induced of tumor necrosis factor. J Immunol 143(4):1290–1294, 1989

    PubMed  Google Scholar 

  40. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W: Cytotoxicity activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. J Biol Chem 267:5317–5323, 1992

    PubMed  Google Scholar 

  41. De Forge LE, Preston AM, Takeuchi E, Kenney J, Boxer LA, Remick DG: Regulation of interleukin-8 gene expression by oxidant stress. J Biol Chem 268(34):25568–25576, 1993

    PubMed  Google Scholar 

  42. Bashir S, Gilmour H, Denman MA, Blake DR, Winyard PG: Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666, 1993

    PubMed  Google Scholar 

  43. Kuchino Y, Mori F, Kasai H, et al: Misreading of DNA templates containing 8-hydroxydcoxyguanosine at the modified base and at adjacent residues. Nature 327:77–79, 1987

    PubMed  Google Scholar 

  44. Harris G: DNA damage and repair of immunologically active cells. Immunol Today 4:109–112, 1983

    Google Scholar 

  45. Shalon L, Gulwani-Akolkar B, Fisher SE, Akolkar PN, Panja A, Mayer L, Silver J: Evidence for an altered T-cell receptor repertiore in Crohn's disease. Autoimmunity 17:241–248, 1994

    PubMed  Google Scholar 

  46. Gulwani-Alokar B, Alokar RN, Cerchia R, McKinley M, Fisher SE, Silver J: Crohn's disease is accompanied by changes in CD4+, but not CD8+, T-cell receptor of lamina propria lymphocytes. Clin Immunol Immunopathol 77:95–106, 1995

    PubMed  Google Scholar 

  47. Riordan JF: Biochemistry of zinc. Med Clin North Am 60:661–674, 1976

    PubMed  Google Scholar 

  48. Samuni A, Chevion M, Czatski G: Unusual copper induced sensitization of the biological damage due to superoxide radicals. J Biol Chem 256:12632–12635, 1981

    PubMed  Google Scholar 

  49. Mulder TP, Verspaget HW, Janssens AR, de Bruin PA, Penna AS, Lamers CV: Decrease in two intestinal copper-zinc containing proteins with antioxidant function in inflammatory bowel disease. Gut 32(10):1146–1150, 1991

    PubMed  Google Scholar 

  50. Verspaget HW, Pena AS, et al: Diminished neutrophil function in Crohn's disease and ulcerative colitis identified by decreased oxidative metabolism and low superoxide dismutase content. Gut 29:223–228, 1988

    PubMed  Google Scholar 

  51. Bray TM, Bettger WJ: The physiologic role of zinc as an antioxidant. Free Radic Biol Med 8:281–291, 1990

    PubMed  Google Scholar 

  52. Powell SR, Hall D, Aiuto L, Wapnir RA, Teichberg S, Tortalani AJ: Zinc improves postischemic recovery of the isolated rat heart through inhibition of oxidative stress. Am J Physiol Heart Circ Physiol 1996 (in press)

  53. Powell SR, Tortolani AJ: Recent advances in the role of reactive oxygen intermediates in ischemic injury. J Surg Res 53(4):417–429, 1992

    PubMed  Google Scholar 

  54. Goldstein S, Czapski G: The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of O 2 . Free Radic Biol Med 2:3–11, 1986

    Google Scholar 

  55. Aronovitch J, Godinger D, Samuni R, Czapski G (eds): Oxygen radicals in chemistry and biology. Berlin, Walter de Gruyter, 1984, pp 219–223

    Google Scholar 

  56. Babbs CF: Oxygen radicals in ulcerative colitis. Free Radic Biol Med 13:169–181, 1992

    PubMed  Google Scholar 

  57. Stadtman ER: Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325, 1990

    PubMed  Google Scholar 

  58. Maskos ZK, Oppenol WH: Oxyradicals and multivitamin tablets. Free Radic Biol Med 11:609–610, 1991

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the Joe and Emily Lowe Foundation, Reach Out for Youth with Ileitis and Colitis, and a gift from Ruth and Leonard Litwin. Dr. Mullin is the recipient of a Career Development Award from the Crohn's and Colitis Foundation of America and an Investigator's Award from the American College of Gastroenterology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lih-Brody, L., Powell, S.R., Collier, K.P. et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Digest Dis Sci 41, 2078–2086 (1996). https://doi.org/10.1007/BF02093613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02093613

Key words

Navigation