Skip to main content
Log in

Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Isolated intestinal segments from rats or hamsters were recirculated with balanced salt solutions containing fluorocarbon emulsion to provide 6 vpc oxygen. The lumen contained an axial Ag−AgCl electrode, and the serosal surface was surrounded by a cylindrical shell of Ag−AgCl. Transmural impedances were measured at frequencies from 0.01–30 kHz before and after removal of the mucosal epithelium. The resistance of intercellular junctions,R J , the distributed resistance of the lateral spaces,R L , and the distributed membrane capacitance,C M , were computed from the relations between frequency and impedance. Activation of Na-coupled solute transport by addition of glucose, 3-0-methyl glucose, alanine or leucine caused two- to threefold decreases of transepithelial impedance. Typical changes induced by glucose in hamster small intestine wereR J 30→13 Ω,R L 23→10 Ω, andC M 8→20 μF (per cm length of segment). Half maximal response occurred at a glucose concentration of 2–3mm. The area per unit path length of the junctions (Apx=specific resistance ÷R J ) in glucose activated epithelium was 3.7 cm in hamster midgut and 6.8 cm in rat. These values are close to the 4.3 cm estimated independently from coefficients of solvent drag and hydrodynamic conductance in glucose-activated rat intestine in vivo. The transepithelial impedance response to Na-coupled solute transport was reversibly dependent upon oxygen tension.

It is proposed that activation of Na-coupled solute transport triggers contraction of circumferential actomyosin fibers in the terminal web of the microvillar cytoskeletal system, thereby pulling apart junctions and allowing paracellular absorption of nutrients by solvent drag as described in the previous accompanying paper. Anatomical evidence in support of this hypothesis is presented in the following second accompanying paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adibi, S.A. 1970. Leucine absorption rate and net movements of sodium and water in human jejunum.J. Appl. Physiol. 18:753–757

    Google Scholar 

  2. Albus, H., Heukelom, J.S. van 1976. The electrophysiological characterization of glucose absorption by the goldfish intestine as compared to mammalian intestines.Comp. Biochem. Physiol. 54A:113–119

    Google Scholar 

  3. Asano, T. 1963. Metabolic disturbances and short-circuit current across intestinal wall of rat.Am. J. Physiol. 207:425–422

    Google Scholar 

  4. Baker, R.D., Watson, S., Long, J.L., Wall, M.J. 1969. Effects of eversion on transmural electrical properties of rat jejunum.Biochim. Biophys. Acta 173:192–197

    PubMed  Google Scholar 

  5. Barry, R.J.C., Smyth, D.H., Wright, E.M. 1965. Short circuit current and solute transfer by the rat jejunum.J. Physiol. (London) 181:410–431

    Google Scholar 

  6. Bindslev, N., Tormey, J. McD., Wright, E.M. 1974. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium.J. Membrane Biol. 19:357–380

    Google Scholar 

  7. Boulpaep, E.L. 1972. Permeability changes of the proximal tubule ofNecturus during saline loading.Am. J. Physiol. 22:517–531

    Google Scholar 

  8. Cereijido, M., Meza, I., Martinez-Palomo, A. 1981. Occluding junctions in cultured epithelial monolayers.Am. J. Physiol. 240:C96-C102

    PubMed  Google Scholar 

  9. Clarkson, T.W. 1967. The transport of salt and water across isolated rat ileum.J. Gen. Physiol. 50:695–727

    PubMed  Google Scholar 

  10. Claude, P. 1978. Morphological factors influencing transepithelial permeability: A model for the resistance of the zonnulae occludens.J. Membrane Biol. 39:219–232

    Google Scholar 

  11. Clausen, C., Lewis, S.A., Diamond, J.M. 1979. Impedance analysis of a tight epithelium using a distributed resistance model.Biophys. J. 26:291–318

    PubMed  Google Scholar 

  12. Cole, K.S. 1968. Membranes, Ions and Impulses. Chs. 1 and 10. University of California Press, Berkley

    Google Scholar 

  13. Crane, R.K. 1968. Absorption of sugars.In: APS Handbook of Physiology. Alimentary Canal III: Intestinal Absorption. pp. 1323–1351. C.F. Code, editor. Williams & Wilkins, Washington, D.C.

    Google Scholar 

  14. Crone, C. 1986. Modulation of solute permeability in microvascular endothelium.Fed. Proc. 45:77–83

    PubMed  Google Scholar 

  15. Diamond, J.M., Machen, T.E. 1983. Impedance analysis in epithelia and the problem of gastric acid secretion.J. Membrane Biol. 72:17–41

    Google Scholar 

  16. Dorando, F.C., Crane, R.K. 1984. Studies of the kinetics of Na+ gradient-coupled glucose transport as found in brushborder membrane vesicles from rabbit jejunum.Biochim. Biophys. Acta 772:273–287

    PubMed  Google Scholar 

  17. Feldman, D.S., Rabinovitch, S., Feldman, E.B. 1975. Surfactants and bioelectric properties of rat jejunum.Am. J. Dig. Dis. 20:866–870

    PubMed  Google Scholar 

  18. Field, M., Fromm, D., McColl, I. 1971. Ion transport in rabbit ileal mucosa: I. Na and Cl fluxes and short circuit current.Am. J. Physiol. 220:1388–1396

    PubMed  Google Scholar 

  19. Fisher, R.B. 1955. The absorption of water and of some small molecules from the isolated intestine of the rat.J. Physiol. (London) 130:655–664

    Google Scholar 

  20. Fisher, R.B., Parsons, D.S. 1957. Surface area of rat intestinal mucosa.J. Anat. 84:272–282

    Google Scholar 

  21. Frizzell, R.A., Schultz, S.G. 1972. Ionic conductance of extracellular shunt pathway in rabbit ileum.J. Gen. Physiol. 59:318–346

    PubMed  Google Scholar 

  22. Fromm, M.M., Schulzke, J.D., Hegel, U.H. 1985. Epithelial and subepithelial contributions to transmural electrical resistance of intact rat jejeunum, in vitro.Pfluegers Arch. 405:400–402

    Google Scholar 

  23. Fromter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259–301

    Google Scholar 

  24. Geyer, R.P., Monroe, R.C., Taylor, K. 1969. Survival of rats having red cells totally replaced with emulsified fluorocarbon.Fed. Proc. 27:384

    Google Scholar 

  25. Hess, P., Lansman, J.B., Tsien, R.W. 1984. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists.Nature (London) 311:538–544

    Google Scholar 

  26. Hildmann, B., Schmidt, A., Murer, H. 1982. Ca2+ transport across basal-lateral plasma membranes from rat small intestinal epithelial cells.J. Membrane Biol. 65: 55–62

    Google Scholar 

  27. Hull, B.E., Staehelin, L.A. 1979. The terminal web. A reevaluation of its structure and function.J. Cell Biol. 81:67–82

    PubMed  Google Scholar 

  28. Keller, T.C.S., Conzelman, K.A., Chasan, R. 1985. Role of myosin in terminal web contraction in isolated intestinal epithelial brush borders.J. Cell Biol. 100:1647–1655

    PubMed  Google Scholar 

  29. Keller, T.C.S., Mooseker, M.S. 1982. Ca++-calmodulin dependent phosphorylation of myosin and its role in brush border contraction in vitro.J. Cell Biol. 95:943–959

    PubMed  Google Scholar 

  30. Lesse, H.J., Mansford, K.R.L. 1971. The effects of insulin and insulin deficiency on the transport and metabolism of glucose by the small intestine.J. Physiol. (London) 212:819–836

    Google Scholar 

  31. Levine, R.R., McNary, W.W., Kornguth, P.J., Leblanc, R. 1970. Histological re-evaluation of everted gut technique for studying intestinal absorption.Eur. J. Pharmacol. 9:211–219

    PubMed  Google Scholar 

  32. Madara, J.L. 1982. Cup cells: Structure and distribution of a unique class of epithelial cells in guinea pigs, rabbit and monkey small intestine.Gastroenterology 83:981–994

    PubMed  Google Scholar 

  33. Madara, J.L. 1987. Intestinal absorptive cell tight junctions are linked by cytoskeleton.Am. J. Physiol. 253:C171-C175

    PubMed  Google Scholar 

  34. Madara, J.L., Barenberg, D., Carlson, S. 1986. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: Further evidence that the cytoskeleton may influence paracellular permeability.J. Cell Biol. 97:2125–2135

    Google Scholar 

  35. Madara, J.L., Pappenheimer, J.R. 1987. The structural basis for physiological regulation of paracellular pathways in intestinal epithelia.J. Membrane Biol. 100:149–164

    Google Scholar 

  36. Mooseker, M.S. 1985. Organization, chemistry and assembly of the cytoskeletal apparatus of the intestinal brush border.Annu. Rev. Cell Biol. 1:209–241

    PubMed  Google Scholar 

  37. Munck, G.G. 1972. Effects of sugar and amino-acid transport on transepithelial fluxes of sodium and chloride of short circuited rat jejunum.J. Physiol. (London) 223:699–717

    Google Scholar 

  38. Munck, B.G., Schultz, S.G. 1974. Properties of the passive conductance pathway across in vitro rat jejunum.J. Membrane Biol. 16:163–174

    Google Scholar 

  39. Okada, Y., Irimajiri, A., Inouye, A. 1977. Electrical properties and active solute transport in rat small intestine: II. Conductive properties of transepithelial routes.J. Membrane Biol. 31:221–232

    Google Scholar 

  40. Olesen, P., Crone, C. 1983. Electrical resistance of muscle capillary endothelium.Biophys. J. 42:31–41

    PubMed  Google Scholar 

  41. Pappenheimer, J.R. 1953. Passage of molecules through capillary walls.Physiol. Rev. 33:387–423

    Google Scholar 

  42. Pappenheimer, J.R., Reiss, K.Z. 1987. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat.J. Membrane Biol. 100:123–136

    Google Scholar 

  43. Rodewald, R., Karnovsky, M.J. 1976. Contraction of isolated brush borders from the intestinal epithelium.J. Cell Biol. 70:541–554

    PubMed  Google Scholar 

  44. Schmidt-Nielsen, B., Davis, L.E. 1968. Fluid transport and tubular intercellular spaces in reptilian kidneys.Science 159:1105–1108

    PubMed  Google Scholar 

  45. Schultz, S.G., Zalusky, R. 1964. Ion transport in isolated rabbit ileum: I. Short circuit current and Na fluxes.J. Gen. Physiol. 47:567–584

    PubMed  Google Scholar 

  46. Smulders, A.P., Tormey, J.M.D., Wright, E.M. 1972. The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder.J. Membrane Biol. 7:164–197

    Google Scholar 

  47. Smyth, D.H., Taylor, C.B. 1957. Transfer of water and solutes by an in vitro intestinal preparation.J. Physiol. (London) 136:632–648

    Google Scholar 

  48. Tormey, J. McD., Diamond, J.M. 1967. The ultrastructural route of fluid transport in rabbit gall bladder.J. Gen. Physiol. 50:2031–2060

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappenheimer, J.R. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J. Membrain Biol. 100, 137–148 (1987). https://doi.org/10.1007/BF02209146

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02209146

Key Words

Navigation