Skip to main content
Log in

Stability of the Maternal Gut Microbiota During Late Pregnancy and Early Lactation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Scarce research has been performed to assess whether the human maternal gut microbiota undergoes changes during the perinatal period. Therefore, in the present study, gut microbiota composition of seven healthy mothers(to-be) was assessed at different time points during the perinatal period (i.e. weeks 3–7 prepartum and days 3–6, 9–14, and 25–30 postpartum) using quantitative polymerase chain reaction (qPCR) and pyrosequencing, and was complemented by short-chain fatty acids (SCFA) and calprotectin quantification using high-performance liquid chromatography and enzyme-linked immunosorbent assay, respectively. qPCR revealed the predominance of members of the Firmicutes, Bacteroides, and Bifidobacterium without detectable changes over the perinatal period. Pyrosequencing supported these data in terms of microbiota stability for any population at any taxonomic level, although ratios of members of the Actinobacteria and Bacteroidetes differed between the two methods. However, the number of operational taxonomic units observed by pyrosequencing was subjected to fluctuations and the relative abundance of Streptococcus decreased numerically postpartum (P = 0.11), which may indicate that aberrancies in subdominant populations occur perinatally. Furthermore, total fecal SCFA concentrations, particularly the branched-chain fatty acids isobutyrate and isovalerate, were higher than for non-pregnant subjects throughout the perinatal period. This suggests metabolic changes and increased energy extraction via proteolytic, in addition to saccharolytic fermentation, accompanied by low-grade inflammation based on fecal calprotectin levels. Our data show that the maternal gut microbiota remained stable over the perinatal period despite altered metabolic activity and low-grade inflammation; however, it remains to be confirmed whether changes preceded earlier during pregnancy and succeeded later postpartum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3(7):e2836. doi:10.1371/journal.pone.0002836

    Article  PubMed Central  PubMed  Google Scholar 

  2. Armougom F, Raoult D (2008) Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics 9:576. doi:10.1186/1471-2164-9-576

    Article  PubMed Central  PubMed  Google Scholar 

  3. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 4(9):e7125. doi:10.1371/journal.pone.0007125

    Article  PubMed Central  PubMed  Google Scholar 

  4. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M’Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. doi:10.1038/nature09944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cani PD, Delzenne NM (2011) The gut microbiome as therapeutic target. Pharmacol Ther 130(2):202–212. doi:10.1016/j.pharmthera.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  6. Carroccio A, Iacono G, Cottone M, Di Prima L, Cartabellotta F, Cavataio F, Scalici C, Montalto G, Di Fede G, Rini G, Notarbartolo A, Averna MR (2003) Diagnostic accuracy of fecal calprotectin assay in distinguishing organic causes of chronic diarrhea from irritable bowel syndrome: a prospective study in adults and children. Clin Chem 49(6 Pt 1):861–867

    Article  CAS  PubMed  Google Scholar 

  7. Chao A, Shen T-J (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10(15):429–443

    Article  Google Scholar 

  8. Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G (2001) Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol 36(8):538–543

    Article  CAS  PubMed  Google Scholar 

  9. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270. doi:10.1016/j.cell.2012.01.035

    Article  CAS  PubMed  Google Scholar 

  10. Cleusix V, Lacroix C, Vollenweider S, Le Blay G (2008) Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiol Ecol 63(1):56–64. doi:10.1111/j.1574-6941.2007.00412.x

    Article  CAS  PubMed  Google Scholar 

  11. Cleusix V, Lacroix C, Dasen G, Leo M, Le Blay G (2010) Comparative study of a new quantitative real-time PCR targeting the xylulose-5-phosphate/fructose-6-phosphate phosphoketolase bifidobacterial gene (xfp) in faecal samples with two fluorescence in situ hybridization methods. J Appl Microbiol 108(1):181–193. doi:10.1111/j.1365-2672.2009.04408.x

    Article  CAS  PubMed  Google Scholar 

  12. Collado MC, Isolauri E, Laitinen K, Salminen S (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88(4):894–899

    CAS  PubMed  Google Scholar 

  13. Costa F, Mumolo MG, Bellini M, Romano MR, Ceccarelli L, Arpe P, Sterpi C, Marchi S, Maltinti G (2003) Role of faecal calprotectin as non-invasive marker of intestinal inflammation. Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 35(9):642–647

    Article  CAS  Google Scholar 

  14. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696. doi:10.1073/pnas.1005963107

    Article  PubMed  Google Scholar 

  15. Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6(3):209–240. doi:10.1007/s12263-011-0229-7

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gueimonde M, Debor L, Tolkko S, Jokisalo E, Salminen S (2007) Quantitative assessment of faecal bifidobacterial populations by real-time PCR using lanthanide probes. J Appl Microbiol 102(4):1116–1122. doi:10.1111/j.1365-2672.2006.03145.x

    CAS  PubMed  Google Scholar 

  17. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 23(2):366–384. doi:10.1017/S0954422410000247

    Article  CAS  PubMed  Google Scholar 

  18. Jaskiewicz J, Zhao Y, Hawes JW, Shimomura Y, Crabb DW, Harris RA (1996) Catabolism of isobutyrate by colonocytes. Arch Biochem Biophys 327(2):265–270. doi:10.1006/abbi.1996.0120

    Article  CAS  PubMed  Google Scholar 

  19. Jost T, Lacroix C, Braegger CP, Chassard C (2012) New insights in gut microbiota establishment in healthy breast fed neonates. PLoS One 7(8):e44595. doi:10.1371/journal.pone.0044595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jost T, Lacroix C, Braegger C, Chassard C (2013) Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr. doi:10.1017/S0007114513000597

    PubMed  Google Scholar 

  21. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C (2013) Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol. doi:10.1111/1462-2920.12238

    Google Scholar 

  22. Ke D, Picard FJ, Martineau F, Menard C, Roy PH, Ouellette M, Bergeron MG (1999) Development of a PCR assay for rapid detection of enterococci. J Clin Microbiol 37(11):3497–3503

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, Gonzalez A, Werner JJ, Angenent LT, Knight R, Backhed F, Isolauri E, Salminen S, Ley RE (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480. doi:10.1016/j.cell.2012.07.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lawson M, Kern F Jr, Everson GT (1985) Gastrointestinal transit time in human pregnancy: prolongation in the second and third trimesters followed by postpartum normalization. Gastroenterology 89(5):996–999

    CAS  PubMed  Google Scholar 

  25. Lee ZM, Bussema C 3rd, Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res (Database issue) 37:D489–493. doi:10.1093/nar/gkn689

    Article  CAS  Google Scholar 

  26. Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123. doi:10.1186/1471-2180-9-123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Olivares M, Boza J, Jiménez J, Fernández L, Xaus J, Rodríguez JM (2004) The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 15(3–4):121–127

    Article  Google Scholar 

  28. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. doi:10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  29. Payne AN, Chassard C, Zimmermann M, Muller P, Stinca S, Lacroix C (2011) The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr Diabetes 1:e12. doi:10.1038/nutd.2011.8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ, Donnet-Hughes A (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119(3):e724–e732. doi:10.1542/peds.2006-1649

    Article  PubMed  Google Scholar 

  31. Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9(9):2125–2136. doi:10.1111/j.1462-2920.2007.01369.x

    Article  PubMed  Google Scholar 

  32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195. doi:10.1038/oby.2009.167

    Article  Google Scholar 

  34. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65(11):4799–4807

    CAS  PubMed Central  PubMed  Google Scholar 

  35. van den Bogert B, de Vos WM, Zoetendal EG, Kleerebezem M (2011) Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl Environ Microbiol 77(6):2071–2080. doi:10.1128/AEM.02477-10

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi:10.1128/AEM.00062-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227. doi:10.1038/nature11053

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by Nestlé Nutrition (Vevey, Switzerland), Nestec (Lausanne, Switzerland), and the Swiss Foundation for Nutrition Research (SFEFS) (Zurich, Switzerland) for the purpose of basic research only. The authors are grateful to Patrick Bühr, Michael Friedt, Petra Martel, Daniela Rogler, and Rebekka Koller at the University Children’s Hospital Zurich for their effort in volunteer recruitment and sampling, and to Valérie Béguin for assisting in qPCR analyses, carried out at the Genetic Diversity Centre of ETH Zurich (Zurich, Switzerland).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Lacroix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, T., Lacroix, C., Braegger, C. et al. Stability of the Maternal Gut Microbiota During Late Pregnancy and Early Lactation. Curr Microbiol 68, 419–427 (2014). https://doi.org/10.1007/s00284-013-0491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0491-6

Keywords

Navigation