Skip to main content
Log in

Regulation of smooth muscle delayed rectifier K+ channels by protein kinase A

  • Original Article
  • Neurophysiology, Muscles and Sensory Organs
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

We identified voltage-activated K+ channels in freshly dispersed smooth muscle cells from the circular layer of the canine colon in patch-clamp experiments using 200 nM charybdotoxin to suppress 270-pS Ca2+-activated K+ channels (BK channels). Three channel types were distinguished in symmetrical 140 mM KCl solutions: 19.5 ± 1.7 pS channels (KDR1), 90.6 ± 5.4 pS channels (KDR2) and 149 ± 4 pS intermediate-conductance Ca2+-activated K+ channels (IK channels). All three types showed an increase in open probability with membrane depolarization. Ensemble average current from KDR1 channels inactivated with a time constant of 1.7 ± 0.1 s at +60 mV test potential, while KDR2 and IK channels did not show inactivation. IK channels were activated by free cytoplasmic [Ca2+] (10−6M) but were insensitive to 4-aminopyridine (4-AP, 10 mM) and intracellular tetraethylammonium (TEA, 1 mM). KDR1 channels were sensitive to 4-AP (10 mM) and intracellular TEA (1–10 mM) but not to Ca2+. KDR2 channels did not have a consistent pharmacological profile, suggesting that this class may be comprised of several subtypes. At +40 mV membrane potential, the catalytic subunit of protein kinase A (PKA) increased the open probability of KDR1 channels 3.4-fold and of KDR2 channels 3.9-fold, but had no effect on IK channels. In the absence of Mg-ATP, PKA did not affect channel open probabilities. At physiological membrane potentials (− 60 mV) only openings of KDR1 channels could be induced by PKA, suggesting that these 4-AP-sensitive 20-pS K+ channels are primarily responsible for the cAMP-mediated hyperpolarization of colonic smooth muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aiello EA, Walsh MP, Cole WC (1995) Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol 268:H926–934

    PubMed  CAS  Google Scholar 

  2. Beech DJ, Bolton TB (1989) Two components of potassium current activated by depolarization of single smooth cells from the rabbit portal vein. J Physiol (Lond) 418:293–309

    CAS  Google Scholar 

  3. Benham CD, Bolton TB (1983) Patch clamp studies of slow potential sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum. J Physiol (Lond) 340: 469–486

    CAS  Google Scholar 

  4. Bonnet P, Rusch NJ, Harder DR (1991) Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells. Pflügers Arch 418:292–296

    Article  PubMed  CAS  Google Scholar 

  5. Boyle JP, Tomasic M, Kotlikoff MI (1992) Delayed rectifier potassium channels in canine and porcine airway smooth muscle cells. J Physiol (Lond) 447:329–350

    CAS  Google Scholar 

  6. Buljubasic N, Rusch NJ, Marijic J, Kampine JP, Bosniak ZJ (1992) Effects of halothane and isoflurane on calcium and potassium channel currents in canine coronary arterial cells. Anesthesiology 76:990–998

    Article  PubMed  CAS  Google Scholar 

  7. Carl A (1995) Multiple components of delayed rectifier K+ current in canine colonic smooth muscle. J Physiol (Lond) 484:339–353

    CAS  Google Scholar 

  8. Carl A, Sanders KM (1989) Ca2+-activated K+ channels of canine colonic myocytes. Am J Physiol 257: C470-C480

    PubMed  CAS  Google Scholar 

  9. Carl A, Kenyon JL, Uemura D, Fusetani N, Sanders KM (1991) Regulation of Ca2+-activated K+ channels by protein kinase A and phosphatase inhibitors. Am J Physiol 261:C387–392

    PubMed  CAS  Google Scholar 

  10. Carl A, Frey BW, Ward SM, Sanders KM, Kenyon JL (1993) Inhibition of slow wave repolarization and Ca2+ -activated K+-channels by quaternary ammonium ions. Am J. Physiol 264:C652-C631

    Google Scholar 

  11. Carl A, Bayguinov O, Shuttleworth CWR, Ward SM, Sanders KM (1994) Role of Ca2+-activated K+ channels in electrical activity of longitudinal and circular muscle layers of canine colon. Am J Physiol 268:C619-C627

    Google Scholar 

  12. Christensen J (1989) Colonie motility. In: Handbook of physiology. The gastrointestinal system. Motility and circulation. Musculature. American Physiological Society, Bethesda, M. Section 6, vol I, pp 939–973

    Google Scholar 

  13. DeGroat WC, Krier J (1979) The central control of the lumbar sympathetic pathway to the large intestine of the cat. J Physiol (Lond) 289:449–468

    CAS  Google Scholar 

  14. Du C, Carl A, Smith TK, Sanders KM, Keef KD (1994) Mechanism of cAMP induced hyperpolarization in canine colon. J Pharmacol Exp Therap 268:208–215

    CAS  Google Scholar 

  15. Gelband CH, Hume JR (1992) Ionic currents in single smooth muscle cell of the canine renal artery. Circ Res 71:745–758

    PubMed  CAS  Google Scholar 

  16. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  17. Hart PJ, Overturf KE, Russell SN, Carl A, Hume JR, Sanders KM, Horowitz B (1993) Cloning and expression of a Kvl.2 delayed rectifier K+ channel from canine colonic smooth muscle, Proc Nat Acad Sci USA 90:9659–9663

    Article  PubMed  CAS  Google Scholar 

  18. Inoue R, Kitamura K, Kuriyama H (1985) Two Ca-dependent K-channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein. Pflügers Arch 405:173–179

    Article  PubMed  CAS  Google Scholar 

  19. Inoue R, Okabe K, Kitamura K, Kuriyama H (1986) A newly identified Ca2+ dependent K+ channel in the smooth muscle membrane of single cells dispersed from the rabbit portal vein. Pflügers Arch 406:138–143

    Article  PubMed  CAS  Google Scholar 

  20. Kapicka CL, Carl A, Hall ML, Percival AL, Frey BW, Kenyon JL (1994) Comparison of large-conductance Ca2+-activated K+ channels in artificial bilayer and patch-clamp experiments. Am J Physiol 266:C601-C610

    PubMed  CAS  Google Scholar 

  21. Kume H, Takai A, Tokuno H, Tomita T (1989) Regulation of Ca2+-activated K+ channel activity in tracheal myocytes by phosphorylation. Nature 341:152–154

    Article  PubMed  CAS  Google Scholar 

  22. Maton PN, Sutliff VE, Zhao ZC, Collins SM, Gardener JD, Jensen RT (1988) Characterization of receptors for calcitonin gene-related peptide on gastric smooth muscle cells. Am J Physiol 254:G789-G794

    PubMed  CAS  Google Scholar 

  23. McFadzean I, England S (1992) Properties of the inactivating outward current in single smooth muscle cells isolated from the rat anococcygeus. Pflügers Arch 421:117–124

    Article  PubMed  CAS  Google Scholar 

  24. Muraki K, Imaizumi Y, Kojima T, Kawai T, Watanabe M (1990) Effects of tetraethylammonium and 4-aminopyridine on outward currents and excitability in canine tracheal smooth muscle cells. Br J Pharmacol 100:507–515

    PubMed  CAS  Google Scholar 

  25. Noack T, Deitmer P, Lammel E (1986) Characterization of membrane currents in single smooth muscle cells from the guinea-pig gastric antrum. J Physiol (Lond) 451:387–417

    Google Scholar 

  26. Ohya Y, Terada K, Kitamura K, Kuriyama H (1986) Membrane currents recorded from a fragment of rabbit intestinal smooth muscle cells. Am J Physiol 251:C335-C346

    PubMed  CAS  Google Scholar 

  27. Okabe K, Kitamura K, Kuriyama H (1987) Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery. Pflügers Arch 409:561–568

    Article  PubMed  CAS  Google Scholar 

  28. Overturf KE, Russell SN, Carl A, Vogalis F, Hart PJ, Hume JR, Sanders KM, Horowitz B (1994) Cloning and characterization of a KV1.5 delayed rectifier K+ channel expressed in vascular and visceral smooth muscles. Am J Physiol 267: C1231-C1238

    PubMed  CAS  Google Scholar 

  29. Pfrunder D, Kreye VA (1992) Tedisamil inhibits the delayed rectifier K+ current in single smooth muscle cells of the guineapig portal vein. Pflügers Arch 421:22–25

    Article  PubMed  CAS  Google Scholar 

  30. Pongs O, Kecskemethy N, Muller R, Krah-Jentgens I, Baumann A, Kiltz HH, Casal I, Llamazares S, Ferrus A (1988) Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J 7:1087–1096

    PubMed  CAS  Google Scholar 

  31. Reinhart PH, Chung S, Levitan IB (1989) A family of calcium-dependent potassium channels from rat brain. Neuron 2: 1031–1041

    Article  PubMed  CAS  Google Scholar 

  32. Robertson BE, Nelson MT (1994). Aminopyridine inhibition and voltage dependence of K+ currents in smooth muscle cells from cerebral arteries. Am J Physiol 267:C1589–1597

    PubMed  CAS  Google Scholar 

  33. Russel SN, Publicover NG, Hart PJ, Carl A, Hume JR, Sanders KM, Horowitz B (1994) Block by 4-aminopyridine of a Kvl.2 delayed rectifier K+ current expressed in Xenopus oocytes. J Physiol (Lond) 481:571–584

    Google Scholar 

  34. Sadoshima J, Akaike N, Tomoike H, Kanaide H, Nakamura M (1988) Ca-activated K channels in cultured smooth muscle cells of rat aortic media. Am J Physiol 255:H410-H418

    PubMed  CAS  Google Scholar 

  35. Sanders KM (1992) Ionic mechanism of electrical rhythmicity in gastrointestinal smooth muscles. Annu Rev Physiol 54: 439–453

    Article  PubMed  CAS  Google Scholar 

  36. Smith TK, Ward SM, Zhang L, Buxton ILO, Gerthoffer WT, Sanders KM, Keef KD (1993) β-adrenergic inhibition of electrical and mechanical activity in canine colon: role of cAMP. Am J Physiol 264:G708-G717

    PubMed  CAS  Google Scholar 

  37. Stuhmer W, Ruppersberg JP, Schroter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 8:3235–3244

    PubMed  CAS  Google Scholar 

  38. Szewczak SM, Behar J, Billet G, Hillemeier C, Rhim BY, Biancani P (1990) VIP-induced alterations in cAMP and inositol phosphates in the lower esophageal sphincter. Am J Physiol 239:G239-G244

    Google Scholar 

  39. Thornbury KD, Ward SM, Sanders KM (1992) Participation of fast-activating, voltage-dependent K currents in electrical slow waves of colonic circular muscle. Am J Physiol 263: C226-C236

    PubMed  CAS  Google Scholar 

  40. Tsien RW, Giles W, Greengard P (1972) Cyclic AMP mediates the effect of adrenaline on cardiac Purkinje fibers. Nature 240:181–183

    CAS  Google Scholar 

  41. Volk KA, Matsuda JJ, Shibata EF (1991) A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells. J Physiol (Lond) 439:751–768

    CAS  Google Scholar 

  42. White TD (1988) Role of adenine compounds in autonomic neurotransmission. Pharmacol Ther 38:129–168

    Article  PubMed  CAS  Google Scholar 

  43. Zhang L, Keef KD, Bradley ME, Buxton ILO (1992) Action of α2a-adrenergic receptors in circular smooth muscle of canine proximal colon. Am J Physiol 262:G517-G524

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, S.D., Sanders, K.M. & Carl, A. Regulation of smooth muscle delayed rectifier K+ channels by protein kinase A. Pflügers Arch — Eur J Physiol 432, 401–412 (1996). https://doi.org/10.1007/s004240050151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050151

Key words

Navigation