Skip to main content
Log in

Simultaneous presence of cAMP and cGMP exert a co-ordinated inhibitory effect on the agonist-evoked Ca2+ signal in pancreatic acinar cells

  • Original Article
  • Molecular and cellular physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The stimulation of the pancreatic acinar cells by physiological secretagogues, such as acetycholine (ACh), activates a well-established intracellular signalling pathway, which involves the generation of Inositol 1,4,5-trisphosphate (InsP3) and the release of Ca2+ from intracellular stores. Caffeine, which inhibits this agonist-evoked Ca2+ response reversibly and competitively also blocks the Ca2+ signal generated by the non-specific activation of the membrane guanine nucleotide-binding proteins (G-proteins). Removal of caffeine is associated with an increase of intracellular [Ca2+] ([Ca2+]i) and the spatial and temporal characteristics of this Ca2+ signal are identical to those of the signal generated by the initial agonist stimulation. Caffeine is also a potent non-specific inhibitor of various cellular phosphodiesterases (PDE) and its inhibitory effect can be reproduced by other PDE inhibitors, chemically related (theophylline) or not (papaverine). Various protocols designed to increase the concentration of either of the major intracellular cyclic nucleotides [adenosine 3′,5′-cyclic monophosphate (cAMP) and guanosine 3′,5′-cyclic monophosphate (cGMP)] failed to reproduce the full extent of the caffeine inhibition: at maximal agonist concentration (1 μM ACh) increases of either cAMP or cGMP did not affect the Ca2+ signal, whereas at submaximal doses of agonist (0.1–0.3 μM ACh) they induced partial inhibition. Here we show that only the simultaneous increase of the cellular concentrations of both cyclic nucleotides (either simultaneous or sequential) are effective in mimicking the blocking effect of caffeine and other non-specific PDE inhibitors. These data indicate, thus, that, in addition to other independent intracellular effects, cAMP and cGMP can exert a co-ordinated inhibitory effect of the agonist-evoked Ca2+ signal in pancreatic acinar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

InsP3 :

inositol 1,4,5,-trisphosphate

PDE:

phosphodiesterases

FK:

forskolin

References

  1. Bahnson TD, Pandol SJ, Dionne VE (1993) Cyclic GMP modulates depletion-activated Ca2+ entry in pancreatic acinar cells. J Biol Chem 268:10808–10812

    PubMed  CAS  Google Scholar 

  2. Brown GR, Sayers LG, Kirk CJ, Michell RH, Michelangeli F (1992) The opening of the inositol 1,4,5,-trisphosphate-sensitive Ca2+ channel in rat cerebellum is modulated by caffeine. Biochem J 282:309–312

    PubMed  CAS  Google Scholar 

  3. Camello PJ, Salido GM (1993) Inhibitory interaction between stimulus-secretion pathways in the exocrine rat pancreas. Biochem Pharmacol 46:1005–1009

    Article  PubMed  CAS  Google Scholar 

  4. Cooper DMF, Mons N, Karpen JW(1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374:421–424

    Article  PubMed  CAS  Google Scholar 

  5. Diarra A, Wang R, Garneau L, Gallo-Payet N, Sauve R (1994) Histamine-evoked Ca2+ oscillations in HeLa cells are sensitive to methylxanthines but insensitive to ryanodine. Pflügers Arch 426:129–138

    Article  PubMed  CAS  Google Scholar 

  6. Ehrlich BA, Kaftan E, Bezprozvannaya S, Bezprozvanny I (1994) The pharmacology of intracellular Ca2+ -release channels. Trends Pharmacol Sci 15:145–149

    Article  PubMed  CAS  Google Scholar 

  7. Ervens J, Seifert R (1991) Differential modulation by N-4, 2′- o-dibutyryl cytidine 3′, 5′-cyclic nucleotide phosphodiesterase isoenzymes. Biochem Biophys Res Commun 174:258–267

    Article  PubMed  CAS  Google Scholar 

  8. Francis SH, Corbin JD (1994) Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol 56: 237–272

    Article  PubMed  CAS  Google Scholar 

  9. Gukovskaya A, Pandol S (1994) Nitric oxide production regulates cGMP formation and calcium influx in pancreatic acinar cells. Am J Physiol 266:G350-G356

    PubMed  CAS  Google Scholar 

  10. Heisler S (1983) Forskolin potentiates calcium-dependent amylase secretion from rat pancreatic acinar cells. Can J Physiol Pharmacol 61:1168–1176

    PubMed  CAS  Google Scholar 

  11. Hirose K, Lino M, Endo M (1993) Caffeine inhibits Ca2+-mediated potentiation of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilised vascular smooth-muscle cells. Biochem Biophys Res Commun 194:726–732

    Article  PubMed  CAS  Google Scholar 

  12. Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348:735–738

    Article  PubMed  CAS  Google Scholar 

  13. Kase H, Wakui M, Petersen OH (1991) Stimulatory and inhibitory actions of VIP and cyclic AMP on cytoplasmic Ca2+ signal generation in pancreatic acinar cells. Pflügers Arch 419: 668–670

    Article  PubMed  CAS  Google Scholar 

  14. Kim U-H, Kim JW, Rhee SG (1989) Phosphorylation of phospholipase C-gamma by cAMP-dependent protein kinase. J Biol Chem 264:20167–20170

    PubMed  CAS  Google Scholar 

  15. Lawrie AM, Toescu EC, Gallacher DV (1993) Two different spatiotemporal patterns for Ca2+ oscillations in pancreatic acinar cells: evidence for a role of protein kinase C in Ins(1,4,5)P3-mediated Ca2+ signalling. Cell Calcium 14:698–710

    Article  PubMed  CAS  Google Scholar 

  16. Murthy KS, Severi C, Grider JR, Makhlouf GM (1993) Inhibition of InsP3 and InsP3-dependent Ca2+ mobilization by cyclic nucleotides in isolated gastric muscle cells. Am J Physiol 264:G967-G974

    PubMed  CAS  Google Scholar 

  17. Nakazato Y, Tani Y, Teraoka H, Sugawara T, Asano T, Ohta T, Ito S (1994) Inhibitory effects of caffeine on secretagogue-induced catecholamine secretion from adrenal chromaffm cells of the guinea-pig. Br J Pharmacol 111:935–941

    PubMed  CAS  Google Scholar 

  18. Newton RP (1992) Cytidine 3′,5′-cyclic monophosphate: a third cyclic nucleotide intracellular mediator? Biochem Soc Trans 20:469–474

    PubMed  CAS  Google Scholar 

  19. Nicholson CD, Challiss RAJ, Shahid M (1991) Differential modulation of tissue function and therapeutical potential of selective inhibitors of cyclic-nucleotide phosphodiesterase isoenzymes. Trends Pharmcol Sci 12:19–27

    Article  CAS  Google Scholar 

  20. Pandol SJ, Schoeffield-Payne MS (1990) Cyclic GMP mediates the agonist-stimulated increase in plasma membrane calcium entry in the pancreatic acinar cells. J Biol Chem 265: 12846–12853

    PubMed  CAS  Google Scholar 

  21. Pandol SJ, Schoeffield-Payne MS (1990) Cyclic GMP regulates free cytosolic calcium in pancreatic acinar cells. Cell Calcium 11:477–486

    Article  PubMed  CAS  Google Scholar 

  22. Parker I, Ivorra I (1991) Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol (Lond) 433:229–240

    CAS  Google Scholar 

  23. Petersen OH (1992) Stimulus-secretion coupling: cytoplasmic calcium signals and control of ion channels in exocrine acinar cells. J Physiol (Lond) 448:1–51

    CAS  Google Scholar 

  24. Petersen OH, Petersen CCH, Kasai H (1994) Calcium and hormone action. Annu Rev Physiol 56:297–319

    Article  PubMed  CAS  Google Scholar 

  25. Poch G, Kukovetz WR (1971) Papaverine-induced inhibition of phosphodiesterase activity in various mammalian tissues. Life Sci 10:133–144

    Article  CAS  Google Scholar 

  26. Saito F, Hori MT, Fittingoff M, Hino T, Tuck ML (1993) Insulin attenuates agonist-mediated calcium mobilization in cultured rat vascular smooth-muscle cells. J Clin Invest 92: 1161–1167

    Article  PubMed  CAS  Google Scholar 

  27. Sanchez-Bueno A, Marrero I, Cobbold PH (1994) Caffeine inhibits agonist-induced cytoplasmic Ca2+ oscillations in single rat hepatocytes. Biochem Biophys Res Commun 198:728–733

    Article  PubMed  CAS  Google Scholar 

  28. Sandberg M, Butt E, Nolte C, Fischer L, Halbrugge M, Beltman J, Jahnsen T, Genieser HG, Jastorff B, Walter U (1991) Characterization of SP-5,6,-DCL-CBIMPS as a potent and specific activator of cyclic-AMP-dependent protein kinase in cell extracts and intact cells. Biochem J 279:521–527

    PubMed  CAS  Google Scholar 

  29. Shuttleworth TJ (1990) Fluoroaluminate activation of different components of the calcium signal in an exocrine cell. Biochem J 269:417–422

    PubMed  CAS  Google Scholar 

  30. Squires PE, James RFL, London NJM, Dunne MJ (1994) ATP-induced intracellular Ca2+ signals in isolated human insulin-secreting cells. Pflügers Arch 427:181–183

    Article  PubMed  CAS  Google Scholar 

  31. Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74: 661–668

    Article  PubMed  CAS  Google Scholar 

  32. Toescu EC, Lawrie AM, Petersen OH, Gallacher DV (1992) Spatial and temporal distribution of agonist-evoked cytoplasmic Ca2+ signals in exocrine acinar cells analysed by digital image microscopy. EMBO J 11:1623–1629

    PubMed  CAS  Google Scholar 

  33. Toescu EC, O’Neill SC, Petersen OH, Eisner DA (1992) Caffeine inhibits the agonist-evoked cytosolic Ca2+ signal in pancreatic acinar cells by blocking inositol trisphosphate production. J Biol Chem 267:23467–23470

    PubMed  CAS  Google Scholar 

  34. Toescu EC, Gallacher DV, Petersen OH (1994) Identical regional mechanisms of intracellular free Ca2+ concentration increase during polarized agonist-evoked Ca2+ response in pancreatic acinar cells. Biochem J 304:313–316

    PubMed  CAS  Google Scholar 

  35. Tsunoda Y (1993) Receptor-operated Ca2+ signalling and crosstalk in stimulus secretion coupling. Biochim Biophys Acta 1154:105–156

    PubMed  CAS  Google Scholar 

  36. Wakui M, Osipchuk YV, Petersen OH (1990) Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+-induced Ca2+ release. Cell 63:1025–1032

    Article  PubMed  CAS  Google Scholar 

  37. Wakui M, Kase H, Petersen OH (1991) Cytoplasmic Ca2+ signals evoked by activation of cholecystokinin receptors: Ca2+-dependent current recording in internally perfused pancreatic acinar cells. J Membr Biol 124:179–187

    Article  PubMed  CAS  Google Scholar 

  38. Wuytack F, Raeymaekers I (1992) The Ca2+ transport ATPases from the plasma membrane. J Bioenerg Biomembr 24: 285–300

    PubMed  CAS  Google Scholar 

  39. Xu X, Star RA, Tortorici G, Muallem S (1994) Depletion of intracellular Ca2+ stores activates nitric-oxide synthase to generate cGMP and regulate Ca2+ influx. J Biol Chem 269: 12645–12653

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camello, P.J., Petersen, O.H. & Toescu, E.C. Simultaneous presence of cAMP and cGMP exert a co-ordinated inhibitory effect on the agonist-evoked Ca2+ signal in pancreatic acinar cells. Pflügers Arch. 432, 775–781 (1996). https://doi.org/10.1007/s004240050198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050198

Key words

Navigation