Skip to main content

Advertisement

Log in

Endoreplication and polyploidy in primary culture of rat hepatic stellate cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hepatic stellate cells (HSCs), the pericytes of hepatic sinusoids, and liver myofibroblasts (rMFs), cells located in the portal field and around the pericentral area, are the principal fibrogenic cell types of the liver. In cases of liver damage HSCs undergo "activation," i.e., they acquire a myofibroblast-like appearance and synthesize huge amounts of extracellular matrix proteins (ECMs). Their proliferation ability, however, is a matter of debate. In fact, during culture the number of rat HSCs decreases, while DNA synthesis activity and DNA content per cell increase (4±0.6 times). Together with the decrease in cell number (60±19% at day 6 of primary culture compared to day 3), cell volume increases and many HSCs become multinuclear. On the other hand, in cultures of rMFs, cell number increases along with DNA synthesis, and these cells do not become multinuclear. "Activated" HSCs produce higher levels of cyclin D1 and E1 transcripts than rMFs, which correlates with their increased levels of phosphorylated retinoblastoma (Rb) protein. In activated HSCs DNA synthesis seems to be associated with polyploidy and increase in cell volume, while DNA synthesis is followed by mitosis in rMFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D.
Fig. 2A–F.
Fig. 3A–D.
Fig. 4A–D.
Fig. 5A–C.
Fig. 6A–D.
Fig. 7A–D

Similar content being viewed by others

References

  • Bissell DM (1992) Lipocyte activation and hepatic fibrosis. Gastroenterology 102:1803–1805

    CAS  PubMed  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    CAS  PubMed  Google Scholar 

  • Crowe WE, Altamirano J, Huerto L, Alvarez-Leefmans FJ (1995) Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience 69:283–296

    Article  CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z, Williamson B, Carswell EA, Old LJ (1984) Cell cycle-specific effects of tumor necrosis factor. Cancer Res 44:83–90

    CAS  PubMed  Google Scholar 

  • de Leeuw AM, Brouwer A, Barelds RJ, Knook DL (1983) Maintenance cultures of Kupffer cells isolated from rats of various ages: ultrastructure, enzyme cytochemistry, and endocytosis. Hepatology 3:497–506

    PubMed  Google Scholar 

  • de Leeuw AM, McCarthy SP, Geerts A, Knook DL (1984) Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 4:392–403

    PubMed  Google Scholar 

  • Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Liskens M, Rublelj I, Pereira-Smith O, Peacocke M (1995) A biomarker that identifies senescent human cells in culture and aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    CAS  PubMed  Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    CAS  PubMed  Google Scholar 

  • Fehrenbach H, Weiskirchen R, Kasper M, Gressner AM (2001) Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts. Hepatology 34:943–952

    Article  CAS  PubMed  Google Scholar 

  • Gandarillas A, Davies D, Blanchard JM (2000) Normal and c-Myc-promoted human keratinocyte differentiation both occur via a novel cell cycle involving cellular growth and endoreplication. Oncogene 19:3278–3289

    Article  CAS  PubMed  Google Scholar 

  • Garcia P, Cales C (1996) Endoreplication in megakaryoblastic cell lines is accompanied by sustained expression of G1/S cyclins and downregulation of cdc25C. Oncogene 15:695–703

    Google Scholar 

  • Gupta S (2000) Hepatic polyploidy and liver growth control. Semin Cancer Biol 10:161–171

    Article  CAS  PubMed  Google Scholar 

  • Hanselmann RG, Oberringer M (2001) Polyploidization: a Janus-faced mechanism. Med Hypotheses 56:58–64

    Article  CAS  PubMed  Google Scholar 

  • Hautekeete ML, Geerts A (1997) The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch 430:195–207

    CAS  PubMed  Google Scholar 

  • Iredale JP (2001) Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis 21:427–436

    Article  CAS  PubMed  Google Scholar 

  • Jack EM, Bentley P, Bieri F, Muakkassah-Kelly SF, Staubli W, Suter J, Waechter F, Cruz-Orive LM (1990) Increase in hepatocyte and nuclear volume and decrease in the population of binucleated cells in preneoplastic foci of rat liver: a stereological study using the nucleator method. Hepatology 11:286–297

    CAS  PubMed  Google Scholar 

  • Jiang Z, Liang P, Leng R, Guo Z, Liu Y, Liu X, Bubnic S, Keating A, Murray D, Goss P Zacksenhaus E (2000) E2F1 and p53 are dispensable, whereas p21(Waf1/Cip1) cooperates with Rb to restrict endoreduplication and apoptosis during skeletal myogenesis. Dev Biol 227:8–41

    Article  CAS  PubMed  Google Scholar 

  • Knittel T, Dinter C, Kobold D, Neubauer K, Mehde M, Eichhorst S, Ramadori G (1999a) Expression and regulation of cell adhesion molecules by hepatic stellate cells (HSC) of rat liver: involvement of HSC in recruitment of inflammatory cells during hepatic tissue repair. Am J Pathol 154:153–167

    CAS  PubMed  Google Scholar 

  • Knittel T, Kobold D, Piscaglia F, Saile B, Neubauer K, Mehde M, Timpl R, Ramadori G (1999b) Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased rat livers: distinct roles of (myo-)fibroblast subpopulations in hepatic tissue repair. Histochem Cell Biol 112:387–401

    Article  CAS  PubMed  Google Scholar 

  • Knittel T, Kobold D, Saile B, Grundmann A, Neubauer K, Piscaglia F, Ramadori G (1999c) Rat myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 117:1205–1222

    CAS  PubMed  Google Scholar 

  • Knook DL, Blansjaar N, Sleyster EC (1977) Isolation and characterization of Kupffer and endothelial cells from the rat liver. Exp Cell Res 109:317–329

    CAS  PubMed  Google Scholar 

  • Kobold D, Grundmann A, Piscaglia F, Eisenbach C, Neubauer K, Steffgen J, Ramadori G, Knittel T (2002) Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J Hepatol 36:607–613

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183–192

    Article  CAS  PubMed  Google Scholar 

  • Li X, Darzynkiewicz Z (1995) Labeling DNA strand breaks with BrdUTP. Detection of apoptosis and cell proliferation. Cell Prolif 28:571–579

    CAS  PubMed  Google Scholar 

  • Mak KM, Lieber CS (1988) Lipocytes and transitional cells in alcoholic liver disease: a morphometric study. Hepatology 8:1027–1033

    CAS  PubMed  Google Scholar 

  • Mendoza-Figueroa T, Arguello C, Kuri-Harcuch W (1988) Culture of proliferating and differentiating fat-storing cells in 3T3-conditioned medium. Biol Cell 64:29–38

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Abe T, Miyazawa M, Yamaguchi M, Masuda T, Matsuura T, Nagamori S, Takeuchi K, Abe K, Kyogoku M (1995) Establishment of a new human cell line LI90, exhibiting characteristics of hepatic Ito (fat-storing) cells. Lab Invest 72:731–739

    CAS  PubMed  Google Scholar 

  • Nakano M, Lieber CS (1982) Ultrastructure of initial stages of perivenular fibrosis in alcohol-fed baboons. Am J Pathol 106:145–155

    CAS  PubMed  Google Scholar 

  • Neubauer K, Knittel T, Aurisch S, Fellmer P, Ramadori G (1996) Glial fibrillary acidic protein—a cell type specific marker for Ito cells in vivo and in vitro. J Hepatol 24:719–730

    Article  CAS  PubMed  Google Scholar 

  • Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629–643

    CAS  PubMed  Google Scholar 

  • Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59:126–142

    Article  Google Scholar 

  • Paunesku T, Mittal S, Protic M, Oryhon J, Korolev SV, Joachimiak A, Woloschak GE (2001) Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol 77:1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Ramadori G, Saile B (2002) Mesenchymal cells in the liver—one cell type or two? Liver 22:283–294

    Google Scholar 

  • Ramadori G, Veit T, Schwogler S, Dienes HP, Knittel T, Rieder H, Meyer zum Büschenfelde KH (1990) Expression of the gene of the alpha-smooth muscle-actin isoform in rat liver and in rat fat-storing (ITO) cells. Virchows Arch B Cell Pathol Mol Pathol 59:349–357

    CAS  Google Scholar 

  • Saile B, Knittel T, Matthes N, Ramadori G (1997) CD95/CD95L mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled HSC proliferation during hepatic tissue repair. Am J Pathol 151:1265–1272

    CAS  PubMed  Google Scholar 

  • Saile B, Matthes N, Knittel T, Ramadori G (1999) Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 30:196–202

    CAS  PubMed  Google Scholar 

  • Saile B, Matthes N, El Armouche H, Neubauer K, Ramadori G (2001) The bcl, NFkappaB and p53/p21WAF1 systems are involved in spontaneous apoptosis and in the anti-apoptotic effect of TGF-beta or TNF-alpha on activated hepatic stellate cells. Eur J Cell Biol 80:554–561

    CAS  PubMed  Google Scholar 

  • Saile B, Matthes N, Neubauer K, Eisenbach C, El-Armouche H, Ramadori G (2002) Rat liver myofibroblasts (rMF) and "activated" hepatic stellate cells (HSC) differ in gene expression of components of the CD95-system as well as in response on TGF-beta stimulation. Am J Physiol Gastrointest Liver Physiol 283:G435–444

    CAS  PubMed  Google Scholar 

  • Sasaki T, Wiedemann H, Matzner M, Chu ML, Timpl R (1996) Expression of fibulin-2 by fibroblasts and deposition with fibronectin into a fibrillar matrix. J Cell Sci 109:2895–2904

    CAS  PubMed  Google Scholar 

  • Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner DA (2003) Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37:653–664

    Article  CAS  PubMed  Google Scholar 

  • Scott FW, Forsdyke DR (1978) The rate of deoxyribonucleic acid synthesis by cultured Chinese-hamster ovary cells. An application of isotope-dilution analysis. Biochem J 170:545–549

    CAS  PubMed  Google Scholar 

  • Senoo H, Hata R (1994) Extracellular matrix regulates and l-ascorbic acid 2-phosphate further modulates morphology, proliferation, and collagen synthesis of perisinusoidal stellate cells. Biochem Biophys Res Commun 200:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Zimmet JM, Toselli P, Thompson A, Jackson CW, Ravid K (2001) Overexpression of cyclin D1 moderately increases ploidy in megakaryocytes. Haematologica 86:17–23

    CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W, Jansen-Durr P (2001) Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol 36:1327–1347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the excellent technical help of Anke Herbst and Sandra Georgi, and the proofreading of Anthony Gardner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Ramadori.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft SFB 402, project C6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudas, J., Saile, B., El-Armouche, H. et al. Endoreplication and polyploidy in primary culture of rat hepatic stellate cells. Cell Tissue Res 313, 301–311 (2003). https://doi.org/10.1007/s00441-003-0768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0768-3

Keywords

Navigation