Skip to main content

Advertisement

Log in

Diagnosis of endoscopic Barrett’s esophagus by transnasal flexible spectral imaging color enhancement

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The diagnosis of endoscopic Barrett’s esophagus (BE) has been under discussion for the past decade because palisade vessels may be obscured by inflammation or the location of upper end of gastric fold may be diversely changed. The flexible spectral imaging color enhancement (FICE) system can reconstruct improved spectral images decomposed from ordinary endoscopic images with free selection of three wavelengths, and can provide non-magnified images with high light intensity.

Methods

To evaluate whether the transnasal FICE system enables easier diagnosis of endoscopic BE, 72 patients with endoscopic BE were observed prospectively with a transnasal endoscope using both conventional images and FICE images. The visualization of palisade vessels and the identification of the demarcation between endoscopic BE mucosa and gastric mucosa were compared between FICE images and conventional endoscopic images, and the CIELAB color differences were calculated among palisade vessels, background BE mucosa and gastric folds.

Results

Palisade vessels could be more clearly visualized in BE mucosa with transnasal FICE than with conventional endoscopy. Demarcation between whitish BE mucosa and the upper end of the brownish gastric mucosa could be clearly identified using transnasal FICE images. Greater color differences existed with FICE images between palisade vessels and background BE mucosa as well as between BE mucosa and gastric folds than with conventional images, leading to better contrasting images.

Conclusions

The transnasal FICE system enables clear visualization of palisade vessels and provides better contrasting images of the demarcation between the BE mucosa and the gastric mucosa, and thus contributes to easier diagnosis of endoscopic BE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

FICE:

Flexible spectral imaging color enhancement

BE:

Barrett’s esophagus

GEJ:

Gastroesophageal junction

NBI:

Narrow band imaging

EGD:

Esophagogastroduodenoscopy

References

  1. Cameron AJ, Zinsmeister AR, Ballard DJ, Carney JA. Prevalence of columnar-lined (Barrett’s) esophagus. Comparison of population-based clinical and autopsy findings. Gastroenterology. 1990;99:918–22.

    CAS  PubMed  Google Scholar 

  2. Schnell TG, Sontag SJ, Chejfec G. Adenocarcinomas arising in tongues or short segments of Barrett’s esophagus. Dig Dis Sci. 1992;37:137–43.

    Article  CAS  PubMed  Google Scholar 

  3. Pera M, Cameron AJ, Trastek VF, Carpenter HA, Zinsmeister AR. Increasing incidence of adenocarcinoma of the esophagus and esophagogastric junction. Gastroenterology. 1993;104:510–3.

    CAS  PubMed  Google Scholar 

  4. Sharma P, Dent J, Armstrong D, Bergman JJ, Gossner L, Hoshihara Y, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006;131:1392–9.

    Article  PubMed  Google Scholar 

  5. Armstrong D. Review article: towards consistency in the endoscopic diagnosis of Barrett’s oesophagus and columnar metaplasia. Aliment Pharmacol Ther. 2004;20(Suppl 5):40–7.

    Article  PubMed  Google Scholar 

  6. Azuma N, Endo T, Arimura Y, Motoya S, Itoh F, Hinoda Y, et al. Prevalence of Barrett’s esophagus and expression of mucin antigens detected by a panel of monoclonal antibodies in Barrett’s esophagus and esophageal adenocarcinoma in Japan. J Gastroenterol. 2000;35:583–92.

    Article  CAS  PubMed  Google Scholar 

  7. Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, et al. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003;38:14–22.

    Article  CAS  PubMed  Google Scholar 

  8. Takubo K, Honma N, Aryal G, Sawabe M, Arai T, Tanaka Y, et al. Is there a set of histologic changes that are invariably reflux associated? Arch Pathol Lab Med. 2005;129:159–63.

    PubMed  Google Scholar 

  9. Osawa H, Yoshizawa M, Yamamoto H, Kita H, Satoh K, Ohnishi H, et al. Optimal band imaging system can facilitate detection of changes in depressed-type early gastric cancer. Gastrointest Endosc. 2008;67:226–34.

    Article  PubMed  Google Scholar 

  10. Yoshizawa M, Osawa H, Yamamoto H, Kita H, Nakano H, Satoh K, et al. Diagnosis of elevated-type early gastric cancer by optimal band imaging system. Gastrointest Endosc. 2009;69:19–28.

    Article  PubMed  Google Scholar 

  11. Togashi K, Osawa H, Koinuma K, Hayashi Y, Miyata T, Sunada K, et al. A comparison of conventional endoscopy, chromoendoscopy and optimal band imaging system for the differentiation of neoplastic versus nonneoplastic colon polyps. Gastrointest Endosc. 2009;69:734–41.

    Article  PubMed  Google Scholar 

  12. Shaker R. Unsedated trans-nasal pharyngoesophagogastroduodenoscopy (T-EGD): technique. Gastrointest Endosc. 1994;40:346–8.

    CAS  PubMed  Google Scholar 

  13. Craig A, Hanlon J, Dent J, Schoeman M. A comparison of transnasal and transoral endoscopy with small-diameter endoscopes in unsedated patients. Gastrointest Endosc. 1999;49:292–6.

    Article  CAS  PubMed  Google Scholar 

  14. Zaman A, Hahn M, Hapke R, Knigge K, Fennerty MB, Katon RM. A randomized trial of peroral versus transnasal unsedated endoscopy using an ultrathin videoendoscope. Gastrointest Endosc. 1999;49:279–84.

    Article  CAS  PubMed  Google Scholar 

  15. Preiss C, Charton JP, Schumacher B, Neuhaus H. A randomized trial of unsedated transnasal small-caliber esophagogastroduodenoscopy (EGD) versus peroral small-caliber EGD versus conventional EGD. Endoscopy. 2003;35:641–6.

    Article  CAS  PubMed  Google Scholar 

  16. Yagi J, Adachi K, Arima N, Tanaka S, Ose T, Azumi T, et al. A prospective randomized comparative study on the safety and tolerability of transnasal esophagogastroduodenoscopy. Endoscopy. 2005;37:1226–31.

    Article  CAS  PubMed  Google Scholar 

  17. Miyake Y, Sekiya T, Kubo S, Hara T. A new spectrophotometer for measuring the spectral reflectance of gastric mucous membrane. J Photogr Sci. 1989;37:134–8.

    Google Scholar 

  18. Shiobara T, Zhou S, Haneishi H, Tsumura N, Miyake Y. Improved color reproduction of electronic endoscopes. J Imag Sci Technol. 1996;40:494–501.

    CAS  Google Scholar 

  19. Tsumura N, Tanaka T, Haneishi H, Miyake Y. Optimal design of mosaic color electronic endoscopes. Opt Commun. 1998;145:27–32.

    Article  CAS  Google Scholar 

  20. Shiobara T, Haneishi H, Miyake Y. Color correction for colorimetric color reproduction in an electronic endoscope. Opt Commun. 1995;114:57–63.

    Article  Google Scholar 

  21. Amano Y, Ishimura N, Furuta K, Takahashi Y, Chinuki D, Mishima Y, et al. Which landmark results in a more consistent diagnosis of Barrett’s esophagus, the gastric folds or the palisade vessels? Gastrointest Endosc. 2006;64:206–11.

    Article  PubMed  Google Scholar 

  22. Kuehni RG. Color-tolerance data and the tentative CIE 1976 L a b formula. J Opt Soc Am. 1976;66:497–500.

    Article  CAS  PubMed  Google Scholar 

  23. Birkner B, Fritz N, Schatke W, Hasford J. A prospective randomized comparison of unsedated ultrathin versus standard esophagogastroduodenoscopy in routine outpatient gastroenterology practice: does it work better through the nose? Endoscopy. 2003;35:647–51.

    Article  CAS  PubMed  Google Scholar 

  24. Faulx AL, Catanzaro A, Zyzanski S, Cooper GS, Pfau PR, Isenberg G, et al. Patient tolerance and acceptance of unsedated ultrathin esophagoscopy. Gastrointest Endosc. 2002;55:620–3.

    Article  PubMed  Google Scholar 

  25. Hongo M. Review article: Barrett’s oesophagus and carcinoma in Japan. Aliment Pharmacol Ther. 2004;8:50–4.

    Article  Google Scholar 

  26. Sambongi M, Igarashi T, OBI T, Yamaguchi M, Ohyama N, Kobayashi M, et al. Analysis of spectral reflectance using normalization methods from endoscopic spectrophy system. Opt Rev. 2002;9:238–43.

    Article  Google Scholar 

  27. Zonios G, Perelman LT, Backman V, Manoharan R, Fitzmaurice M, Van Dam J, et al. Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl Opt. 1999;38:6628–37.

    Article  CAS  PubMed  Google Scholar 

  28. Yao K, Yao T, Matsui T, Iwashita A, Oishi T. Hemoglobin content in intramucosal gastric carcinoma as a marker of histologic differentiation: a clinical application of quantitative electronic endoscopy. Gastrointest Endosc. 2000;52:241–5.

    Article  CAS  PubMed  Google Scholar 

  29. Gono K, OBI T, Ohyama N, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004;9:568–77.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Ryo Takahashi for his work with the calculation of color difference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Osawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osawa, H., Yamamoto, H., Yamada, N. et al. Diagnosis of endoscopic Barrett’s esophagus by transnasal flexible spectral imaging color enhancement. J Gastroenterol 44, 1125–1132 (2009). https://doi.org/10.1007/s00535-009-0121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0121-z

Keywords

Navigation