Skip to main content
Log in

Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases

Bedeutung des Galle-Toxizität Konzeptes für die Pathogenese und Therapie von cholestatischen Lebererkrankungen

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Störungen der Gallensekretion können auf hepatozellulärer und cholangiozellulärer Ebene eine Cholestase verursachen. Die Bildung einer "toxischen Galle" als Folge einer abnormen Gallezusammensetzung kann zu einer Schädigung der Hepatozyten und vor allem der Gallengänge führen. Die kanalikuläre Phospholipid Flippase (Mdr2/MDR3) bewerkstelligt normalerweise die biliäre Exkretion von Phospholipiden welche in weiterer Folge gemischte Mizellen mit Gallensäuren und Cholesterin bilden, und dadurch das Gallengangsepithel vor der Detergenzienwirkung der potentiell toxischen Gallensäuren schützen. Mdr2 Knockout Mäuse sind nicht in der Lage Phospholipide in die Galle zu sezernieren und entwickeln eine Gallengangsschädigung mit den makroskopischen und mikroskopischen Zeichen einer sklerosierenden Cholangitis. MDR3 Mutationen können beim Menschen ein breites Spektrum hepatobiliärer Erkrankungen verursachen, welche von der progressiven familiären intrahepatischen Cholestase beim Neugeborenen über die intrahepatische Schwangerschaftscholestase, medikamentös-induzierte Cholestasen, intrahepatische Cholelithiasis bis hin zu sklerosierenden Cholangitis und biliären Zirrhose beim Erwachsenen reichen. Andere Beispiele für eine Gallengangsschädigung als Folge einer toxischen Galle sind die Cholangiopathie im Rahmen einer zystischen Fibrose, nach Litocholsäurefütterung im Mausmodell, sowie Vanishing Bile Duct Syndrome durch Medikamente und Xenobiotika. Der therapeutische Ansatz für Cholangiopathien kann auf eine Modulation der Gallezusammensetzung im Sinne einer Reduktion der Toxizität bzw. eine Protektion des Gallengangsepithels abzielen. Die Ursodeoxycholsäure (UDCA) weist einige dieser Eigenschaften auf, zeigte jedoch in der Therapie von Cholangiopathien beim Menschen nur eine limitierte klinische Effektivität. Im Gegensatz zu UDCA, unterliegt die Seitenketten verkürzte norUDCA einem cholehepatischen Shunting und induziert eine Bikarbonat-reiche Hypercholerese. Weiters hat norUDCA anti-inflammatorische, anti-fibrotische und anti-proliferative Effekte und stimuliert die Gallensäurendetoxifikation. Geplante klinische Studien werden erst zeigen müssen ob norUDCA oder andere Seitenketten-modifizierte Gallensäuren auch beim Menschen klinisch effektiv sind. Neue Therapieansätze beinhalten auch die Möglichkeit über Kernrezeptoren wie FXR und PPARα die Gallezusammensetzung und Galletoxizität zu beeinflussen.

Summary

Alterations in bile secretion at the hepatocellular and cholangiocellular levels may cause cholestasis. Formation of 'toxic bile' may be the consequence of abnormal bile composition and can result in hepatocellular and/or bile duct injury. The canalicular phospholipid flippase (Mdr2/MDR3) normally mediates biliary excretion of phospholipids, which normally form mixed micelles with bile acids and cholesterol to protect the bile duct epithelium from the detergent properties of bile acids. Mdr2 knockout mice are not capable of excreting phospholipids into bile and spontaneously develop bile duct injury with macroscopic and microscopic features closely resembling human sclerosing cholangitis. MDR3 mutations have been linked to a broad spectrum of hepatobiliary disorders in humans ranging from progressive familial intrahepatic cholestasis in neonates to intrahepatic cholestasis of pregnancy, drug-induced cholestasis, intrahepatic cholelithiasis, sclerosing cholangitis and biliary cirrhosis in adults. Other examples for bile injury due to the formation of toxic bile include the cholangiopathy seen in cystic fibrosis, after lithocholate feeding (in mice) and vanishing bile duct syndromes induced by drugs and xenobiotics. Therapeutic strategies for cholangiopathies may target bile composition/toxicity and the affected bile duct epithelium itself, and ideally should also have anti-cholestatic, anti-fibrotic and anti-neoplastic properties. Ursodeoxycholic acid (UDCA) shows some of these properties, but is of limited efficacy in the treatment of human cholangiopathies. By contrast to UDCA, its side chain-shortened homologue norUDCA undergoes cholehepatic shunting leading to a bicarbonate-rich hypercholeresis. Moreover, norUDCA has anti-inflammatory, anti-fibrotic and anti-proliferative effects, and stimulates bile acid detoxification. Upcoming clinical trials will have to demonstrate whether norUDCA or other side chain-modified bile acids are also clinically effective in humans. Finally, drugs for the treatment of cholangiopathies may target bile toxicity via nuclear receptors (FXR, PPARα) regulating biliary phospholipid and bile acid excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev, 83: 633–671, 2003

    PubMed  CAS  Google Scholar 

  • Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch, 453: 601–610, 2007

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink RP, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology, 130: 908–925, 2006

    Article  PubMed  Google Scholar 

  • Trauner M, Fickert P, Wagner M. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis, 27: 77–98, 2007

    Article  PubMed  CAS  Google Scholar 

  • Hofmann AF. Bile acids as drugs: principles, mechanisms of action and formulations. Ital J Gastroenterol, 27: 106–113, 1995

    PubMed  CAS  Google Scholar 

  • Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med, 159: 2647–2658, 1999

    Article  PubMed  CAS  Google Scholar 

  • Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt NM, van Roon MA, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell, 75: 451–462, 1993

    Article  PubMed  CAS  Google Scholar 

  • Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R, Lammert F, Langner C, Zatloukal K, Marschall HU, Denk H, Trauner M. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology, 127: 261–274, 2004

    Article  PubMed  CAS  Google Scholar 

  • Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Weiglein AH, Lammert F, Marschall HU, Tsybrovskyy O, Zatloukal K, Denk H, Trauner M. Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology, 123: 1238–1251, 2002

    Article  PubMed  CAS  Google Scholar 

  • Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D. Mdr2 (Abcb4)−/− mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol, 43: 1045–1054, 2005

    Article  PubMed  CAS  Google Scholar 

  • Mauad TH, van Nieuwkerk CM, Dingemans KP, Smit JJ, Schinkel AH, Notenboom RG, van den Bergh Weerman MA, Verkruisen RP, Groen AK, Oude Elferink RP, et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol, 145: 1237–1245, 1994

    PubMed  CAS  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature, 431: 461–466, 2004

    Article  PubMed  CAS  Google Scholar 

  • Lammert F, Wang DQ, Hillebrandt S, Geier A, Fickert P, Trauner M, Matern S, Paigen B, Carey MC. Spontaneous cholecysto- and hepatolithiasis in Mdr2−/− mice: a model for low phospholipid-associated cholelithiasis. Hepatology, 39: 117–128, 2004

    Article  PubMed  Google Scholar 

  • Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N, Olam D, Jacob-Hirsch J, Amariglio N, Rechavi G, Domany E, Galun E, Goldenberg D. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res, 5: 1159–1170, 2007

    Article  PubMed  CAS  Google Scholar 

  • Sheth S, Shea JC, Bishop MD, et al. Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis. Hum Genet, 113: 286–292, 2003

    Article  PubMed  Google Scholar 

  • Blanco PG, Zaman MM, Junaidi O, et al. Induction of colitis in cftr−/− mice results in bile duct injury. Am J Physiol Gastrointest Liver Physiol, 287: G491–G496, 2004

    Article  PubMed  CAS  Google Scholar 

  • Pall H, Zielenski J, Jonas MM, et al. Primary sclerosing cholangitis in childhood is associated with abnormalities in cystic fibrosis-mediated chloride channel function. J Pediatr, 151: 255–259, 2007

    Article  PubMed  CAS  Google Scholar 

  • McGill JM, Williams DM, Hunt CM. Survey of cystic fibrosis transmembrane conductance regulator genotypes in primary sclerosing cholangitis. Dig Dis Sci, 41: 540–542, 1996

    Article  PubMed  CAS  Google Scholar 

  • Girodon E, Sternberg D, Chazouilleres O, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) gene defects in patients with primary sclerosing cholangitis. J Hepatol, 37: 192–197, 2002

    Article  PubMed  CAS  Google Scholar 

  • Gallegos-Orozco JF, C EY, Wang N, et al. Lack of association of common cystic fibrosis transmembrane conductance regulator gene mutations with primary sclerosing cholangitis. Am J Gastroenterol, 100: 874–878, 2005

    Article  PubMed  CAS  Google Scholar 

  • Lazaridis KN, Strazzabosco M, LaRusso NF. The cholangiopathies: disorders of biliary epithelia. Gastroenterology, 127: 1565–1577, 2004

    Article  PubMed  CAS  Google Scholar 

  • Durie PR, Kent G, Phillips MJ, Ackerley CA. Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol, 164: 1481–1493, 2004

    PubMed  Google Scholar 

  • Pall H, Zaman MM, Andersson C, Freedman SD. Decreased peroxisome proliferator activated receptor alpha is associated with bile duct injury in cystic fibrosis transmembrane conductance regulator−/− mice. J Pediatr Gastroenterol Nutr, 42: 275–281, 2006

    Article  PubMed  CAS  Google Scholar 

  • Ollero M, Junaidi O, Zaman MM, Tzameli I, Ferrando AA, Andersson C, Blanco PG, Bialecki E, Freedman SD. Decreased expression of peroxisome proliferator activated receptor gamma in cftr−/− mice. J Cell Physiol, 200: 235–244, 2004

    Article  PubMed  CAS  Google Scholar 

  • Fickert P, Stöger U, Fuchsbichler A, Moustafa T, Marschall HU, Weiglein AH, Tsybrovskyy O, Jaeschke H, Zatloukal K, Denk H, Trauner M. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol, 171: 525–536, 2007

    Article  PubMed  CAS  Google Scholar 

  • Chang ML, Yeh CT, Chang PY, Chen JC. Comparison of murine cirrhosis models induced by hepatotoxin administration and common bile duct ligation. World J Gastroenterol, 11: 4167–4172, 2005

    PubMed  CAS  Google Scholar 

  • Fickert P, Fuchsbichler A, Marschall HU, Wagner M, Zollner G, Krause R, Zatloukal K, Jaeschke H, Denk H, Trauner M. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Am J Pathol, 168: 410–422, 2006

    Article  PubMed  CAS  Google Scholar 

  • Jansen PL, Sturm E. Genetic cholestasis, causes and consequences for hepatobiliary transport. Liver Int, 23: 315–322, 2003

    Article  PubMed  CAS  Google Scholar 

  • Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ. Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol, 43: 342–357, 2005

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin E, De Vree JM, Cresteil D, Sokal EM, Sturm E, Dumont M, Scheffer GL, Paul M, Burdelski M, Bosma PJ, Bernard O, Hadchouel M, Elferink RP. The wide spectrum of multidrug resistance 3 deficiency: from neonatalcholestasis to cirrhosis of adulthood. Gastroenterology, 120: 1448–1458, 2001

    Article  PubMed  CAS  Google Scholar 

  • Geuken E, Visser D, Kuipers F, Blokzijl H, Leuvenink HG, de Jong KP, Peeters PM, Jansen PL, Slooff MJ, Gouw AS, Porte RJ. Rapid increase of bile salt secretion is associated with bile duct injury after human liver transplantation. J Hepatol, 41: 1017–1025, 2004

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra H, Porte RJ, Tian Y, Jochum W, Stieger B, Moritz W, Slooff MJ, Graf R, Clavien PA. Bile salt toxicity aggravates cold ischemic injury of bile ducts after liver transplantation in Mdr2+/− mice. Hepatology, 43: 1022–1031, 2006

    Article  PubMed  CAS  Google Scholar 

  • Pauli-Magnus C, Kerb R, Fattinger K, Lang T, Anwald B, Kullak-Ublick GA, Beuers U, Meier PJ. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology, 39: 779–791, 2004

    Article  PubMed  CAS  Google Scholar 

  • Melum E, Boberg KM, Franke A, Bergquist A, Hampe J, Schreiber S, Lie BA, Schrumpf E, Karlsen TH. Variation in the MDR3 gene influences disease progression in PSC patients and disease susceptibility in epistatic interaction with a polymorphism in the OST-alpha gene. Hepatology, 46: 265A, 2007

    Google Scholar 

  • Prieto J, Qian C, Garcia N, Diez J, Medina JF. Abnormal expression of anion exchanger genes in primary biliary cirrhosis. Gastroenterology, 105: 572–578, 1993

    PubMed  CAS  Google Scholar 

  • Medina JF, Martinez A, Vazquez JJ, Prieto J. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology, 25: 12–17, 1997

    Article  PubMed  CAS  Google Scholar 

  • Prieto J, Garcia N, Marti-Climent JM, Penuelas I, Richter JA, Medina JF. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology, 117: 167–172, 1999

    Article  PubMed  CAS  Google Scholar 

  • Melero S, Spirli C, Zsembery A, et al. Defective regulation of cholangiocyte Cl/HCO3 (−) and Na/H exchanger activities in primary biliary cirrhosis. Hepatology, 35: 1513–1521, 2002

    Article  PubMed  CAS  Google Scholar 

  • Vazquez JJ, Vazquez M, Idoate MA, et al. Anion exchanger immunoreactivity in human salivary glands in health and Sjogren's syndrome. Am J Pathol, 146: 1422–1432, 1995

    PubMed  CAS  Google Scholar 

  • Zollner G, Fickert P, Silbert D, et al. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol, 38: 717–727, 2003

    Article  PubMed  CAS  Google Scholar 

  • Spirli C, Nathanson MH, Fiorotto R, et al. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology, 121: 156–169, 2001

    Article  PubMed  CAS  Google Scholar 

  • LaRusso NF, Shneider BL, Black D, Gores GJ, James SP, Doo E, Hoofnagle JH. Primary sclerosing cholangitis: summary of a workshop. Hepatology, 44: 746–764, 2006

    Article  PubMed  Google Scholar 

  • Cullen SN, Chapman RW. The medical management of primary sclerosing cholangitis. Semin Liver Dis, 26: 52–61, 2006

    Article  PubMed  CAS  Google Scholar 

  • Beuers U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol, 3: 318–328, 2006

    Article  PubMed  CAS  Google Scholar 

  • Paumgartner G, Beuers U. Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin Liver Dis, 8: 67–81, 2004

    Article  PubMed  Google Scholar 

  • Yoon YB, Hagey LR, Hofmann AF, Gurantz D, Michelotti EL, Steinbach JH. Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology, 90: 837–852, 1986

    PubMed  CAS  Google Scholar 

  • Hofmann AF, Zakko SF, Lira M, Clerici C, Hagey LR, Lambert KK, Steinbach JH, Schteingart CD, Olinga P, Groothuis GM. Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatology, 42: 1391–1398, 2005

    Article  PubMed  CAS  Google Scholar 

  • Fickert P, Wagner M, Marschall HU, Fuchsbichler A, Zollner G, Tsybrovskyy O, Zatloukal K, Liu J, Waalkes MP, Cover C, Denk H, Hofmann AF, Jaeschke H, Trauner M. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology, 130: 465–481, 2006

    Article  PubMed  CAS  Google Scholar 

  • Bolder U, Trang NV, Hagey LR, Schteingart CD, Ton-Nu HT, Cerre C, Elferink RP, Hofmann AF. Sulindac is excreted into bile by a canalicular bile salt pump and undergoes acholehepatic circulation in rats. Gastroenterology, 117: 962–971, 1999

    Article  PubMed  CAS  Google Scholar 

  • Leuschner M, Holtmeier J, Ackermann H, Leuschner U. The influence of sulindac on patients with primary biliary cirrhosis that responds incompletely to ursodeoxycholic acid: a pilot study. Eur J Gastroenterol Hepatol, 14: 1369–1376, 2002

    Article  PubMed  CAS  Google Scholar 

  • Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm, 3: 231–251, 2006

    Article  PubMed  CAS  Google Scholar 

  • Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta, 1773: 283–308, 2007

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Halilbasic E, Marschall HU, Zollner G, Fickert P, Langner C, Zatloukal K, Denk H, Trauner M. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology, 42: 420–430, 2005

    Article  PubMed  CAS  Google Scholar 

  • Stojakovic T, Putz-Bankuti C, Fauler G, Scharnagl H, Wagner M, Stadlbauer V, Gurakuqi G, Stauber RE, März W, Trauner M. Atorvastatin in patients with primary biliary cirrhosis and incomplete biochemical response to ursodeoxycholic acid. Hepatology, 46: 776–784, 2007

    Article  PubMed  CAS  Google Scholar 

  • Salas JT, Banales JM, Sarvide S, Recalde S, Ferrer A, Uriarte I, Oude Elferink RP, Prieto J, Medina JF. Ae2a,b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology, 134(5): 1482–1493, 2008

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Trauner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trauner, M., Fickert, P., Halilbasic, E. et al. Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wien Med Wochenschr 158, 542–548 (2008). https://doi.org/10.1007/s10354-008-0592-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-008-0592-1

Schlüsselwörter

Keywords

Navigation