Skip to main content

Advertisement

Log in

Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging

  • Nanobioengineering
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The field of molecular imaging has recently seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing researchers to monitor not only anatomical changes, but physiological and molecular changes as well. Applications have ranged from detecting inflammatory diseases via the accumulation of non-targeted SPIO in infiltrating macrophages to the specific identification of cell surface markers expressed on tumors. In this article, we attempt to illustrate the broad utility of SPIO in molecular imaging, including some of the recent developments, such as the transformation of SPIO into an activatable probe termed the magnetic relaxation switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

REFERENCES

  1. Antony, A. C. Folate receptors. Annu. Rev. Nutr. 16:501–521, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Anzai, Y. Superparamagnetic iron oxide nanoparticles: Nodal metastases and beyond. Top. Magn. Reson. Imaging 15:103–111, 2004.

    Article  PubMed  Google Scholar 

  3. Anzai, Y., C. W. Piccoli, E. K. Outwater, W. Stanford, D. A. Bluemke, P. Nurenberg, S. Saini, K. R. Maravilla, D. E. Feldman, U. P. Schmiedl, J. A. Brunberg, I. R. Francis, S. E. Harms, P. M. Som, and C. M. Tempany. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: Phase III safety and efficacy study. Radiology 228:777–788, 2003.

    PubMed  Google Scholar 

  4. Anzai, Y., M. R. Prince, T. L. Chenevert, J. H. Maki, F. Londy, M. London, and S. J. MacLachlan. MR angiography with an ultrasmall superparamagnetic iron oxide blood pool agent. J. Magn. Reson. Imaging 7:75–81, 1997.

    PubMed  CAS  Google Scholar 

  5. Arbab, A. S., T. Ichikawa, H. Sou, T. Araki, H. Nakajima, K. Ishigame, T. Yoshikawa, and H. Kumagai. Ferumoxides-enhanced double-echo T2-weighted MR imaging in differentiating metastases from nonsolid benign lesions of the liver. Radiology 225:151–158, 2002.

    PubMed  CAS  Google Scholar 

  6. Arbab, A. S., G. T. Yocum, L. B. Wilson, A. Parwana, E. K. Jordan, H. Kalish, and J. A. Frank. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol. Imaging 3:24–32, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Ariens, R. A., T. S. Lai, J. W. Weisel, C. S. Greenberg, and P. J. Grant. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100:743–754, 2002.

    Article  PubMed  CAS  Google Scholar 

  8. Artemov, D., N. Mori, B. Okollie, and Z. M. Bhujwalla. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49:403–408, 2003.

    Article  PubMed  CAS  Google Scholar 

  9. Artemov, D., N. Mori, R. Ravi, and Z. M. Bhujwalla. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res. 63:2723–2727, 2003.

    PubMed  CAS  Google Scholar 

  10. Ayyub, P., M. Multani, M. Barma, V. R. Palkar, and R. Vijayaraghavan. Size-induced structural phase-transitions and hyperfine properties of microcrystalline Fe2O3. J. Phys. C Solid State Phys. 21:2229–2245, 1988.

    Article  CAS  Google Scholar 

  11. Babes, L., B. Denizot, G. Tanguy, J. J. Le Jeune, and P. Jallet. Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study. J. Colloid Interface Sci. 212:474–482, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Banati, R. B., J. Gehrmann, P. Schubert, and G. W. Kreutzberg. Cytotoxicity of microglia. Glia 7:111–118, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Bee, A., R. Massart, and S. Neveu. Synthesis of very fine maghemite particle. J. Magn. Magn. Mater. 149:6–9, 1995.

    Article  CAS  Google Scholar 

  14. Belin, T., N. Guigue-Millot, T. Caillot, D. Aymes, and J. C. Niepce. Influence of grain size, oxygen stoichiometry, and synthesis conditions on the small gamma, Greek-Fe2O3 vacancies ordering and lattice parameters. J. Solid State Chem. 163:459–465, 2002.

    Article  CAS  Google Scholar 

  15. Bischoff, J., C. Brasel, B. Kraling, and K. Vranovska. E-selectin is upregulated in proliferating endothelial cells in vitro. Microcirculation 4:279–287, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Bos, C., Y. Delmas, A. Desmouliere, A. Solanilla, O. Hauger, C. Grosset, I. Dubus, Z. Ivanovic, J. Rosenbaum, P. Charbord, C. Combe, J. W. Bulte, C. T. Moonen, J. Ripoche, and N. Grenier. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789, 2004.

    PubMed  Google Scholar 

  17. Brooks, R. A. T(2)-shortening by strongly magnetized spheres: A chemical exchange model. Magn. Reson. Med. 47:388–391, 2002.

    Article  PubMed  CAS  Google Scholar 

  18. Bruckl, H., M. Panhorst, J. Schotter, P. B. Kamp, and A. Becker. Magnetic particles as markers and carriers of biomolecules. IEE Proc. Nanobiotechnol. 152:41–46, 2005.

    Article  PubMed  CAS  Google Scholar 

  19. Bulte, J. W., S. Zhang, P. van Gelderen, V. Herynek, E. K. Jordan, I. D. Duncan, J. A. Frank. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 96:15256–15261, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Carreno, T. G., A. Mifsud, C. J. Serna, and J. M. Palacios. Preparation of homogeneous Zn/Co mixed oxides by spray pyrolysis. Mater. Chem. Phys. 27:287–296, 1991.

    Article  Google Scholar 

  21. Caruso, F., M. Spasova, A. Susha, M. Giersig, and R. A. Caruso. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem. Mater. 13:109–116, 2001.

    Article  CAS  Google Scholar 

  22. Caruso, F., A. S. Susha, M. Giersig, and H. Mohwald. Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres. Adv. Mater. 11:950, 1999.

    Article  CAS  Google Scholar 

  23. Chapman, P. T., F. Jamar, E. T. Keelan, A. M. Peters, and D. O. Haskard. Use of a radiolabeled monoclonal antibody against E-selectin for imaging of endothelial activation in rheumatoid arthritis. Arthritis Rheum. 39:1371–1375, 1996.

    PubMed  CAS  Google Scholar 

  24. Choi, H., S. R. Choi, R. Zhou, H. F. Kung, and I. W. Chen. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad. Radiol. 11:996–1004, 2004.

    Article  PubMed  Google Scholar 

  25. Cornell, R. M., and U. Schertmann. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Weinheim: VCH Publishers, 1996.

    Google Scholar 

  26. Corot, C., K. G. Petry, R. Trivedi, A. Saleh, C. Jonkmanns, J. F. Le Bas, E. Blezer, M. Rausch, B. Brochet, P. Foster-Gareau, D. Baleriaux, S. Gaillard, and V. Dousset. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest. Radiol. 39:619–625, 2004.

    Article  PubMed  CAS  Google Scholar 

  27. Daldrup-Link, H. E., M. Rudelius, R. A. Oostendorp, M. Settles, G. Piontek, S. Metz, H. Rosenbrock, U. Keller, U. Heinzmann, E. J. Rummeny, J. Schlegel, and T. M. Link. Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767, 2003.

    PubMed  Google Scholar 

  28. Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277:1232–1237, 1997.

    Article  CAS  Google Scholar 

  29. Deng, Y., L. Wang, W. Yang, S. Fu, A. Elaissari. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater. 257:69–78, 2003.

    Article  CAS  Google Scholar 

  30. Dodd, C. H., H. C. Hsu, W. J. Chu, P. Yang, H. G. Zhang, J. D. Mountz Jr., K. Zinn, J. Forder, L. Josephson, R. Weissleder, J. M. Mountz, and J. D. Mountz. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods 256:89–105, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Dodd, S. J., M. Williams, J. P. Suhan, D. S. Williams, A. P. Koretsky, and C. Ho. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J. 76:103–109, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Dormer, K., C. Seeney, A. Mamedov, and F. Mondalek. Internalization of nanoparticles in the middle ear epithelium in response to an external magnetic field: Generating a force. Proceedings of Nanotech 2004, 2004.

  33. Dousset, V., C. Delalande, L. Ballarino, B. Quesson, D. Seilhan, M. Coussemacq, E. Thiaudiere, B. Brochet, P. Canioni, and J. M. Caille. In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn. Reson. Med. 41:329–333, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Edelman, R. R. Contrast-enhanced MR imaging of the heart: Overview of the literature. Radiology 232:653–668, 2004.

    PubMed  Google Scholar 

  35. Elliot, S. R. The Physics and Chemistry of Solids. New York: Wiley, 1998.

    Google Scholar 

  36. Emoto, K., N. Toyama-Sorimachi, H. Karasuyama, K. Inoue, and M. Umeda. Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp. Cell Res. 232:430–434, 1997.

    Article  PubMed  CAS  Google Scholar 

  37. Enochs, W. S., G. Harsh, F. Hochberg, and R. Weissleder. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging 9:228–232, 1999.

    Article  PubMed  CAS  Google Scholar 

  38. Fabry, B., G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Fauconnier, N., A. Bee, J. Roger, and J. N. Pons. Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J. Mol. Liquids 83:233–242, 1999.

    Article  Google Scholar 

  40. Flacke, S., S. Fischer, M. J. Scott, R. J. Fuhrhop, J. S. Allen, M. McLean, P. Winter, G. A. Sicard, P. J. Gaffney, S. A. Wickline, and G. M. Lanza. Novel MRI contrast agent for molecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation 104:1280–1285, 2001.

    PubMed  CAS  Google Scholar 

  41. Fletcher, F., and E. London. Intravenous iron. Br. Med. J. 84, 1954.

  42. Foster-Gareau, P., C. Heyn, A. Alejski, and B. K. Rutt. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn. Reson. Med. 49:968–971, 2003.

    Article  PubMed  Google Scholar 

  43. Frank, J. A., B. R. Miller, A. S. Arbab, H. A. Zywicke, E. K. Jordan, B. K. Lewis, L. H. Bryant Jr., and J. W. Bulte. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487, 2003.

    PubMed  Google Scholar 

  44. Funovics, M. A., B. Kapeller, C. Hoeller, H. S. Su, R. Kunstfeld, S. Puig, and K. Macfelda. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn. Reson. Imaging 22:843–850, 2004.

    Article  PubMed  CAS  Google Scholar 

  45. Gao, X., L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16:63–72, 2005.

    Article  PubMed  CAS  Google Scholar 

  46. Gilchrist, R. K., R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, and C. B. Taylor. Selective inductive heating of lymph nodes. Ann. Surg. 146:596–606, 1957.

    PubMed  CAS  Google Scholar 

  47. Gillis, P., F. Moiny, and R. A. Brooks. On T(2)-shortening by strongly magnetized spheres: A partial refocusing model. Magn. Reson. Med. 47:257–263, 2002.

    Article  PubMed  Google Scholar 

  48. Goodarzi, A., Y. Sayoo, M. T. Swihart, and P. N. Prasad. Aqueous ferrofluid of citric acid coated magnetite particles. Mater. Res. Soc. Symp. Proc. 789:129–134, 2004.

    Google Scholar 

  49. Grimm, J., J. M. Perez, L. Josephson, and R. Weissleder. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 64:639–643, 2004.

    Article  PubMed  CAS  Google Scholar 

  50. Groman, E. V., K. G. Paul, T. B. Frigo, H. H. Bengele, and J. M. Lewis. Heat stable colloidal iron oxides coated with reduced carbohydrates and carbohdrate derivatives, US Patent 6599498, in US, Advanced Magnetics, Inc., 2003.

  51. Gupta, A. Iron infusion into the arterial blood line during haemodialysis: A novel method to remove free iron and reduce oxidative damage. Nephrol. Dial. Transplant 15:1482–1484, 2000.

    Article  PubMed  CAS  Google Scholar 

  52. Gupta, A. K., and A. S. Curtis. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. J. Mater. Sci. Mater. Med. 15:493–496, 2004.

    Article  PubMed  CAS  Google Scholar 

  53. Gupta, A. K., and S. Wells. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 3:66–73, 2004.

    Article  Google Scholar 

  54. Hahn, P. F., D. D. Stark, J. M. Lewis, S. Saini, G. Elizondo, R. Weissleder, C. J. Fretz, and J. T. Ferrucci. First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology 175:695–700, 1990.

    PubMed  CAS  Google Scholar 

  55. Harisinghani, M. G., J. Barentsz, P. F. Hahn, W. M. Deserno, S. Tabatabaei, C. H. van de Kaa, J. de la Rosette, and R. Weissleder. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348:2491–2499, 2003.

    Article  PubMed  Google Scholar 

  56. He, Y. P., S. Q. Wang, C. R. Li, Y. M. Miao, Z. Y. Wu, and B. S. Zou. Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications. J. Phys. D Appl. Phys. 38:1342–1350, 2005.

    Article  CAS  Google Scholar 

  57. Herschman, H. R. Molecular imaging: Looking at problems, seeing solutions. Science 302:605–608, 2003.

    Article  PubMed  CAS  Google Scholar 

  58. Hinds, K. A., J. M. Hill, E. M. Shapiro, M. O. Laukkanen, A. C. Silva, C. A. Combs, T. R. Varney, R. S. Balaban, A. P. Koretsky, and C. E. Dunbar. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872, 2003.

    Article  PubMed  CAS  Google Scholar 

  59. Hochepied, J. F., and M. P. Pileni. Magnetic properties of mixed cobalt–zinc ferrite nanoparticles. J. Appl. Phys. 87:2472–2478, 2000.

    Article  CAS  Google Scholar 

  60. Hogemann, D., L. Josephson, R. Weissleder, J. P. Basilion. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjug. Chem. 11:941–946, 2000.

    Article  PubMed  CAS  Google Scholar 

  61. Hundt, W., R. Petsch, T. Helmberger, and M. Reiser. Effect of superparamagnetic iron oxide on bone marrow. Eur. Radiol. 10:1495–1500, 2000.

    Article  PubMed  CAS  Google Scholar 

  62. Ichikawa, T., D. Hogemann, Y. Saeki, E. Tyminski, K. Terada, R. Weissleder, E. A. Chiocca, and J. P. Basilion. MRI of transgene expression: Correlation to therapeutic gene expression. Neoplasia 4:523–530, 2002.

    Article  PubMed  CAS  Google Scholar 

  63. Igartua, M., P. Saulnier, B. Heurtault, B. Pech, J. E. Proust, J. L. Pedraz, and J. P. Benoit. Development and characterization of solid lipid nanoparticles loaded with magnetite. Int. J. Pharm. 233:149–157, 2002.

    Article  PubMed  CAS  Google Scholar 

  64. Jaffer, F. A., and R. Weissleder. Seeing within: Molecular imaging of the cardiovascular system. Circ. Res. 94:433–445, 2004.

    Article  PubMed  CAS  Google Scholar 

  65. Johansson, L. O., A. Bjornerud, H. K. Ahlstrom, D. L. Ladd, and D. K. Fujii. A targeted contrast agent for magnetic resonance imaging of thrombus: Implications of spatial resolution. J. Magn. Reson. Imaging 13:615–618, 2001.

    Article  PubMed  CAS  Google Scholar 

  66. Jolivet, J. P. Metal Oxide Chemistry and Synthesis: From Solutions to Solid State. New York: Wiley, 2000.

    Google Scholar 

  67. Josephson, L., J. M. Perez, and R. Weissleder. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew Chem. Int. Ed. Engl. 40:3204, 2001.

    Article  CAS  Google Scholar 

  68. Josephson, L., C. H. Tung, A. Moore, and R. Weissleder. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem. 10:186–191, 1999.

    Article  PubMed  CAS  Google Scholar 

  69. Kachra, Z., E. Beaulieu, L. Delbecchi, N. Mousseau, F. Berthelet, R. Moumdjian, R. Del Maestro, and R. Beliveau. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin. Exp. Metastasis 17:555–566, 1999.

    Article  PubMed  CAS  Google Scholar 

  70. Kang, H. W., L. Josephson, A. Petrovsky, R. Weissleder, and A. Bogdanov Jr.. Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13:122–127, 2002.

    Article  PubMed  CAS  Google Scholar 

  71. Kanno, S., Y. J. Wu, P. C. Lee, S. J. Dodd, M. Williams, B. P. Griffith, and C. Ho. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104:934–938, 2001.

    PubMed  CAS  Google Scholar 

  72. Kelly, K. A., J. R. Allport, A. Tsourkas, V. R. Shinde-Patil, L. Josephson, and R. Weissleder. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96:327–336, 2005.

    Article  PubMed  CAS  Google Scholar 

  73. Kemshead, J. T., and J. Ugelstad. Magnetic separation techniques: Their application to medicine. Mol. Cell. Biochem. 67:11–18, 1985.

    PubMed  CAS  Google Scholar 

  74. Kim, D. K., W. Voit, W. Zapka, B. Bjelke, M. Muhammed, and K. V. Rao. Biomedical application of ferrofluids containing magnetite nanoparticles. Mater. Res. Soc. Symp. Proc. 676:y8.32.31.31–36, 2001.

    Google Scholar 

  75. Kooi, M. E., V. C. Cappendijk, K. B. Cleutjens, A. G. Kessels, P. J. Kitslaar, M. Borgers, P. M. Frederik, M. J. Daemen, and J. M. van Engelshoven. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458, 2003.

    Article  PubMed  CAS  Google Scholar 

  76. Kraling, B. M., M. J. Razon, L. M. Boon, D. Zurakowski, C. Seachord, R. P. Darveau, J. B. Mulliken, C. L. Corless, and J. Bischoff. E-selectin is present in proliferating endothelial cells in human hemangiomas. Am. J. Pathol. 148:1181–1191, 1996.

    PubMed  CAS  Google Scholar 

  77. Kresse, M., S. Wagner, D. Pfefferer, R. Lawaczeck, V. Elste, and W. Semmler. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn. Reson. Med. 40:236–242, 1998.

    PubMed  CAS  Google Scholar 

  78. LaConte, L. E., N. Nitin, and G. Bao. Magnetic nanoparticle probes. Mater. Today 8(Suppl. 1):32–38, 2005.

    Article  Google Scholar 

  79. Lee, S.-J., J.-R. Leong, S.-C. Shin, J.-C. Kim, Y.-H. Chang, Y.-M. Chang, and J.-D. Kim. Nanoparticles of magnetic ferric oxides encapsulated with poly(d,l latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J. Magn. Magn. Mater. 272–276:2432–2433, 2004.

    Article  CAS  Google Scholar 

  80. Lewin, M., N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden, and R. Weissleder. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18:410–414, 2000.

    Article  PubMed  CAS  Google Scholar 

  81. Li, Z., H. Chen, H. B. Bao, and M. Y. Gao. One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem. Mater. 16:1391–1393, 2004.

    Article  CAS  Google Scholar 

  82. Lind, K., M. Kresse, N. P. Debus, and R. H. Muller. A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: Comparison of physicochemical properties and the in vivo behaviour. J. Drug Target 10:221–230, 2002.

    Article  PubMed  CAS  Google Scholar 

  83. London, E. The molecular formula and proposed structure of the iron-dextran complex, imferon. J. Pharm. Sci. 93:1838, 2004.

    Article  PubMed  CAS  Google Scholar 

  84. Louie, A. Y., M. M. Huber, E. T. Ahrens, U. Rothbacher, R. Moats, R. E. Jacobs, S. E. Fraser, and T. J. Meade. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18:321–325, 2000.

    Article  PubMed  CAS  Google Scholar 

  85. Lu, Y., B. T. Mayers, and Y. Xia. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett. 2:183–186, 2002.

    Article  CAS  Google Scholar 

  86. Mack, M. G., J. O. Balzer, R. Straub, K. Eichler, and T. J. Vogl. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222:239–244, 2002.

    PubMed  Google Scholar 

  87. Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17:1247–1248, 1981.

    Article  Google Scholar 

  88. Massart, R. Magnetic fluids and process for obtaining them, US Patent 4329241, in US, 1982.

  89. Massart, R., E. Dubois, V. Cabuil, and E. HasmonayPreparation and properties of monodisperse magnetic fluids. J. Magn. Magn. Mater. 149:1–5, 1995.

    Article  CAS  Google Scholar 

  90. Matuszewski, L., T. Persigehl, A. Wall, W. Schwindt, B. Tombach, M. Fobker, C. Poremba, W. Ebert, W. Heindel, and C. Bremer. Cell tagging with clinically approved iron oxides: Feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161, 2005.

    PubMed  Google Scholar 

  91. Moffat, B. A., G. R. Reddy, P. McConville, D. E. Hall, T. L. Chenevert, R. R. Kopelman, M. Philbert, R. Weissleder, A. Rehemtulla, and B. D. Ross. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol. Imaging 2:324–332, 2003.

    Article  PubMed  CAS  Google Scholar 

  92. Molday, R. S. Magnetic iron-dextran microspheres, US Patent 4452773, in 1984.

  93. Molday, R. S., and D. MacKenzie. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods 52:353–367, 1982.

    Article  PubMed  CAS  Google Scholar 

  94. Moore, A., J. Basilion, A. Chiocca, and R. Weissleder. Measuring transferrin receptor gene expression by NMR imaging. Biochim. Biophys. Acta 1402:239–249, 1998.

    Article  PubMed  CAS  Google Scholar 

  95. Moore, A., E. Marecos, A. Bogdanov Jr., and R. Weissleder. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574, 2000.

    PubMed  CAS  Google Scholar 

  96. Moore, A., Z. Medarova, A. Potthast, and G. Dai. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res. 64:1821–1827, 2004.

    Article  PubMed  CAS  Google Scholar 

  97. Morais, P. C., P. P. Gravina, A. F. Bakuzis, K. Skeff Neto, and E. C. D. Lima. Magneto-optical properties of ionic magnetic fluids: The effect of the nanoparticle surface passivation. Phys. Status Solidi C 1:3575–3578, 2004.

    Article  CAS  Google Scholar 

  98. Morales, M. P., S. Veintemillas-Verdaguer, M. I. Montero, and C. J. Serna. Surfance and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater. 11:3058, 1999.

    Article  CAS  Google Scholar 

  99. Morawski, A. M., P. M. Winter, K. C. Crowder, S. D. Caruthers, R. W. Fuhrhop, M. J. Scott, J. D. Robertson, D. R. Abendschein, G. M. Lanza, and S. A. Wickline. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn. Reson. Med. 51:480–486, 2004.

    Article  PubMed  CAS  Google Scholar 

  100. Mornet, S., S. Vasseur, F. Grasset, and E. Duguet. Magnetic nanoparticles design for medical diagnosis and therapy. Bioconjug. Chem. 14:2161–2175, 2004.

    CAS  Google Scholar 

  101. Nitin, N., L. E. LaConte, O. Zurkiya, X. Hu, and G. Bao. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem. 9:706–712, 2004.

    Article  PubMed  CAS  Google Scholar 

  102. Palmacci, S., and L. Josephson. Synthesis of polysaccharide covered superparamagnetic oxid colloids, US Patent 5262176, in US, Advanced Magnetics, Inc., 1993.

  103. Papell, S. S. US Patent 3215572, in US, 1965.

  104. Passirani, C., G. Barratt, J. P. Devissaguet, and D. Labarre. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res. 15:1046–1050, 1998.

    Article  PubMed  CAS  Google Scholar 

  105. Perez, J. M., L. Josephson, T. O’Loughlin, D. Hogemann, and R. Weissleder. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20:816–820, 2002.

    PubMed  CAS  Google Scholar 

  106. Perez, J. M., T. O’Loughin, F. J. Simeone, R. Weissleder, and L. Josephson. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124:2856–2857, 2002.

    Article  PubMed  CAS  Google Scholar 

  107. Perez, J. M., F. Simeone, A. Tsourkas, L. Josephson, and R. Weissleder. Peroxidase substrate nanosensors for MR imaging. Nano Lett. 4:119–122, 2004.

    Article  CAS  Google Scholar 

  108. Perez, J. M., F. J. Simeone, Y. Saeki, L. Josephson, and R. Weissleder. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125:10192–10193, 2003.

    Article  PubMed  CAS  Google Scholar 

  109. Petri-Fink, A., M. Chastellain, L. Juillerat-Jeanneret, A. Ferrari, and H. Hofmann. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26:2685–2694, 2005.

    Article  PubMed  CAS  Google Scholar 

  110. Phelps, M. E. PET: A biological imaging technique. Neurochem. Res. 16:929–940, 1991.

    Article  PubMed  CAS  Google Scholar 

  111. Pileni, M. P. Reverse Micelles as Microreactors. J. Phys. Chem. 97:6961–6973, 1993.

    Article  CAS  Google Scholar 

  112. Pileni, M. P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2:145–150, 2003.

    Article  PubMed  CAS  Google Scholar 

  113. Pillai, V., P. Kumar, M. J. Hou, P. Ayyub, and D. O. Shah. Preparation of nanoparticles of silver-halides, superconductors and magnetic-materials using water-in-oil microemulsions as nano-reactors. Adv. Colloid Interface Sci. 55:241–269, 1995.

    Article  CAS  Google Scholar 

  114. Qhobosheane, M., S. Santra, P. Zhang, and W. Tan. Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278, 2001.

    Article  PubMed  CAS  Google Scholar 

  115. Qian, Z. M., H. Li, H. Sun, and K. Ho. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54:561–587, 2002.

    Article  PubMed  CAS  Google Scholar 

  116. Raynal, I., P. Prigent, S. Peyramaure, A. Najid, C. Rebuzzi, and C. Corot. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: Mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol. 39:56–63, 2004.

    Article  PubMed  CAS  Google Scholar 

  117. Reimer, P., N. Jahnke, M. Fiebich, W. Schima, F. Deckers, C. Marx, N. Holzknecht, and S. Saini. Hepatic lesion detection and characterization: Value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology 217:152–158, 2000.

    PubMed  CAS  Google Scholar 

  118. Reimer, P., and P. Landwehr. Non-invasive vascular imaging of peripheral vessels. Eur. Radiol. 8:858–872, 1998.

    Article  PubMed  CAS  Google Scholar 

  119. Reimer, P., R. Weissleder, A. S. Lee, J. Wittenberg, and T. J. Brady. Receptor imaging: Application to MR imaging of liver cancer. Radiology 177:729–734, 1990.

    PubMed  CAS  Google Scholar 

  120. Reimer, P., R. Weissleder, T. Shen, W. T. Knoefel, and T. J. Brady. Pancreatic receptors: Initial feasibility studies with a targeted contrast agent for MR imaging. Radiology 193:527–531, 1994.

    PubMed  CAS  Google Scholar 

  121. Reimers, G. W., and S. E. Khalafalla. Preparing magnetic fluids by a peptizing method. Bureau Mines Tech. Prog. Rep. 59, 1972.

  122. Rockenberger, J., E. C. Scher, and A. P. Alivisatos. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 121:11595–11596, 1999.

    Article  CAS  Google Scholar 

  123. Rosensweig, R. E. Ferrohydrodynamics. Cambridge: Cambridge University Press, 1985.

    Google Scholar 

  124. Ruehm, S. G., C. Corot, P. Vogt, H. Cristina, and J. F. Debatin. Ultrasmall superparamagnetic iron oxide-enhanced MR imaging of atherosclerotic plaque in hyperlipidemic rabbits. Acad. Radiol. 9( Suppl 1):S143–S144, 2002.

    Article  PubMed  Google Scholar 

  125. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell. Dev. Biol. 12:697–715, 1996.

    Article  PubMed  CAS  Google Scholar 

  126. Saeed, M., M. F. Wendland, M. Engelbrecht, H. Sakuma, and C. B. Higgins. Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities. Eur. Radiol. 8:1047–1053, 1998.

    Article  PubMed  CAS  Google Scholar 

  127. Saleh, A., M. Schroeter, C. Jonkmanns, H. P. Hartung, U. Modder, and S. Jander. In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127:1670–1677, 2004.

    PubMed  Google Scholar 

  128. Schellenberger, E. A., A. Bogdanov Jr., D. Hogemann, J. Tait, R. Weissleder, and L. Josephson. Annexin V-CLIO: A nanoparticle for detecting apoptosis by MRI. Mol. Imaging 1:102–107, 2002.

    Article  PubMed  CAS  Google Scholar 

  129. Schellenberger, E. A., D. Sosnovik, R. Weissleder, and L. Josephson. Magneto/optical annexin V, a multimodal protein. Bioconjug. Chem. 15:1062–1067, 2004.

    Article  PubMed  CAS  Google Scholar 

  130. Schmitz, S. A., M. Taupitz, S. Wagner, K. J. Wolf, D. Beyersdorff, and B. Hamm. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J. Magn. Reson. Imaging 14:355–361, 2001.

    Article  PubMed  CAS  Google Scholar 

  131. Schwertmann, U., and R. M. Cornell. Iron Oxides in the Laboratory, Preparation and Characterization. Cambridge: Wiley-VCH, 2003.

    Google Scholar 

  132. Seip, C. T., E. E. Carpenter, C. J. O’Connor, V. T. John, and S. C. Li. Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles. IEEE Trans. Magn. 34:1111–1113, 1998.

    Article  CAS  Google Scholar 

  133. Shamsi, K., T. Balzer, S. Saini, P. R. Ros, R. C. Nelson, E. C. Carter, S. Tollerfield, and H. P. Niendorf. Superparamagnetic iron oxide particles (SH U 555 A): Evaluation of efficacy in three doses for hepatic MR imaging. Radiology 206:365–371, 1998.

    PubMed  CAS  Google Scholar 

  134. Shapiro, E. M., S. Skrtic, K. Sharer, J. M. Hill, C. E. Dunbar, and A. P. Koretsky. MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 101:10901–10906, 2004.

    Article  PubMed  CAS  Google Scholar 

  135. Shen, T., R. Weissleder, M. Papisov, A. Bogdanov Jr., and T. J. Brady. Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties. Magn. Reson. Med. 29:599–604, 1993.

    PubMed  CAS  Google Scholar 

  136. Skold, C. N. Magnetic particles and methods of producing coated magnetic particles, US Patent App. 20020000398, in US, 2002.

  137. Sorensen, C. M. Nanoscale Materials in Chemistry. New York: Wiley, 2001.

    Google Scholar 

  138. Sudimack, J., and R. J. Lee. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41:147–162, 2000.

    Article  PubMed  CAS  Google Scholar 

  139. Suslick, K. S., M. M. Fang, and T. Hyeon. Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 118:11960–11961, 1996.

    Article  CAS  Google Scholar 

  140. Tanimoto, A., K. Oshio, M. Suematsu, D. Pouliquen, and D. D. Stark. Relaxation effects of clustered particles. J. Magn. Reson. Imaging 14:72–77, 2001.

    Article  PubMed  CAS  Google Scholar 

  141. Tebble, R. S., and D. J. Craik. Magnetic Materials. London: Wiley-Interscience, 1969.

    Google Scholar 

  142. Thorstensen, K., and I. Romslo. The transferrin receptor: Its diagnostic value and its potential as therapeutic target. Scand. J. Clin. Lab. Invest. Suppl. 215:113–120, 1993.

    PubMed  CAS  Google Scholar 

  143. Toma, A., E. Otsuji, Y. Kuriu, K. Okamoto, D. Ichikawa, A. Hagiwara, H. Ito, T. Nishimura, and H. Yamagishi. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br. J. Cancer 2005.

  144. Tsourkas, A., O. Hofstetter, H. Hofstetter, R. Weissleder, and L. Josephson. Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew Chem. Int. Ed. Engl. 43:2395–2399, 2004.

    Article  PubMed  CAS  Google Scholar 

  145. Tsourkas, A., V. R. Shinde-Patil, K. A. Kelly, P. Patel, A. Wolley, J. R. Allport, and R. Weissleder. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug. Chem. 16:576–581, 2005.

    Article  PubMed  CAS  Google Scholar 

  146. Vande Berg, B. C., F. E. Lecouvet, J. P. Kanku, J. Jamart, B. E. Van Beers, B. Maldague, and J. Malghem. Ferumoxides-enhanced quantitative magnetic resonance imaging of the normal and abnormal bone marrow: Preliminary assessment. J. Magn. Reson. Imaging 9:322–328, 1999.

    Article  PubMed  CAS  Google Scholar 

  147. Veintemillas-Verdaguer, S., M. P. Morales, and C. J. Serna. Effect of the oxidation conditions on the maghemites produced by laser pyrolysis. Appl. Organometallic Chem. 15:365–372, 2001.

    Article  CAS  Google Scholar 

  148. Veiseh, O., C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J. Olson, and M. Zhang. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5:1003–1008, 2005.

    Article  PubMed  CAS  Google Scholar 

  149. Vogl, T. J., R. Hammerstingl, W. Schwarz, M. G. Mack, P. K. Muller, W. Pegios, H. Keck, A. Eibl-Eibesfeldt, J. Hoelzl, B. Woessmer, C. Bergman, and R. Felix. Superparamagnetic iron oxide-enhanced versus gadolinium-enhanced MR imaging for differential diagnosis of focal liver lesions. Radiology 198:881–887, 1996.

    PubMed  CAS  Google Scholar 

  150. Wagner, S., J. Schnorr, H. Pilgrimm, B. Hamm, and M. Taupitz. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: Preclinical in vivo characterization. Invest. Radiol. 37:167–177, 2002.

    Article  PubMed  CAS  Google Scholar 

  151. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.

    PubMed  MathSciNet  CAS  Google Scholar 

  152. Wang, Y. X., S. M. Hussain, and G. P. Krestin. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11:2319–2331, 2001.

    Article  PubMed  CAS  Google Scholar 

  153. Weissleder, R. Monocrystalline iron oxide particles for studying biological tissues, US Patent 5492814, in US, The General Hospital Corporation, 1996.

  154. Weissleder, R., A. Bogdanov, E. A. Neuwelt, and M. Papisov. Long-circulating iron oxides for MR imaging. Adv. Drug Deliv. Rev. 16:321–334, 1995.

    Article  CAS  Google Scholar 

  155. Weissleder, R., G. Elizondo, J. Wittenberg, A. S. Lee, L. Josephson, and T. J. Brady. Ultrasmall superparamagnetic iron oxide: An intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175:494–498, 1990.

    PubMed  CAS  Google Scholar 

  156. Weissleder, R., G. Elizondo, J. Wittenberg, C. A. Rabito, H. H. Bengele, and L. Josephson. Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493, 1990.

    PubMed  CAS  Google Scholar 

  157. Weissleder, R., P. F. Hahn, D. D. Stark, G. Elizondo, S. Saini, L. E. Todd, J. Wittenberg, and J. T. Ferrucci. Superparamagnetic iron oxide: Enhanced detection of focal splenic tumors with MR imaging. Radiology 169:399–403, 1988.

    PubMed  CAS  Google Scholar 

  158. Weissleder, R., A. S. Lee, B. A. Khaw, T. Shen, and T. J. Brady. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182:381–385, 1992.

    PubMed  CAS  Google Scholar 

  159. Weissleder, R., D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton, D. L. White, P. Jacobs, and J. Lewis. Superparamagnetic iron oxide: Pharmacokinetics and toxicity. Am. J. Roentgenol. 152:167–173, 1989.

    CAS  Google Scholar 

  160. Weissleder, R., D. D. Stark, E. J. Rummeny, C. C. Compton, and J. T. Ferrucci. Splenic lymphoma: Ferrite-enhanced MR imaging in rats. Radiology 166:423–430, 1988.

    PubMed  CAS  Google Scholar 

  161. Yu, S., and G. M. Chow. Carboxyl group (−CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem. 14:2781–2786, 2004.

    Article  CAS  Google Scholar 

  162. Zhang, R., M. L. Brennan, X. Fu, R. J. Aviles, G. L. Pearce, M. S. Penn, E. J. Topol, D. L. Sprecher, and S. L. Hazen. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 286:2136–2142, 2001.

    Article  PubMed  CAS  Google Scholar 

  163. Zhao, M., D. A. Beauregard, L. Loizou, B. Davletov, and K. M. Brindle. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7:1241–1244, 2001.

    Article  PubMed  CAS  Google Scholar 

  164. Zhao, M., L. Josephson, Y. Tang, and R. Weissleder. Magnetic sensors for protease assays. Angew Chem. Int. Ed. Engl. 42:1375–1378, 2003.

    Article  PubMed  CAS  Google Scholar 

  165. Zimmer, C., R. Weissleder, K. Poss, A. Bogdanova, S. C. Wright Jr., and W. S. Enochs. MR imaging of phagocytosis in experimental gliomas. Radiology 197:533–538, 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Tsourkas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorek, D.L.J., Chen, A.K., Czupryna, J. et al. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Ann Biomed Eng 34, 23–38 (2006). https://doi.org/10.1007/s10439-005-9002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9002-7

Keywords

Navigation