Skip to main content

Advertisement

Log in

Anti-Inflammation Role for Mesenchymal Stem Cells Transplantation in Myocardial Infarction

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the role of anti-inflammation for MSCs transplantation in rat models of myocardial infarction. Rats with AMI induced by occlusion of the left coronary artery were randomized to MSCs transplantation group, MI group and sham operated group. The effects of MSCs transplantation on cardiac inflammation and left ventricular remodeling in non-infarcted zone were observed after 4 weeks of MI. We found that MSC transplantation (1) decreased protein production and gene expression of inflammation cytokines TNF-α, IL-1β and IL-6, (2) inhibited deposition of type I and III collagen, as well as gene and protein expression of MMP-1 and TIMP-1, (3) attenuated LV cavitary dilation and transmural infarct thinning, thus prevent myocardial remodeling after myocardial infarction, and (4) increased EF, FS, LVESP and dp/dtmax (P < 0.01), decreased LVDd, LVEDV, LVEDP (P < 0.05). Anti-inflammation role for MSCs transplantation might partly account for the cardiac protective effect in ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li, R. K., D. A. Mickle, R. D. Weisel, M. K. Mohabeer, J. Zhang, V. Rao, et al. 1997. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96(9 Suppl):II-179–186; discussion 186–187.

    Google Scholar 

  2. Scorsin, M., A. Hagege, J. T. Vilquin, M. Fiszman, F. Marotte, J. L. Samuel, et al. 2000. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg. 119:1169–1175.

    Article  PubMed  CAS  Google Scholar 

  3. Min, J. Y., Y. Yang, K. L. Converso, L. Liu, Q. Huang, and J. P. Morgan, et al. 2002. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92:288–296.

    Article  PubMed  CAS  Google Scholar 

  4. Min, J. Y., Y. Yang, M. F. Sullivan, Q. Ke, K. L. Converso, Y. Chen, et al. 2003. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg. 125:361–369.

    Article  PubMed  Google Scholar 

  5. Taylor, D. A., B. Z. Atkins, P. Hungspreugs, T. R. Jones, M. C. Reedy, K. A. Hutcheson, et al. 1998. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4:929–933.

    Article  PubMed  CAS  Google Scholar 

  6. Menasche, P., A. A. Hagege, M. Scorsin, B. Pouzet, M. Desnos, D. Duboc, et al. 2001. Myoblast transplantation for heart failure. Lancet 357:279–280.

    Article  PubMed  CAS  Google Scholar 

  7. Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49.

    Article  PubMed  CAS  Google Scholar 

  8. Pittenger, M. F., and B. J. Martin. 2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95:9.

    Article  PubMed  CAS  Google Scholar 

  9. Barry, F. P., and J. M. Murphy. 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell. Biol. 36:568.

    Article  PubMed  CAS  Google Scholar 

  10. Toma, C., M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98.

    Article  PubMed  Google Scholar 

  11. Shake, J. G., P. J. Gruber, W. A. Baumgartner, G. Senechal, J. Meyers, J. M. Redmond, et al. 2002. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73:1919–1926.

    Article  PubMed  Google Scholar 

  12. Mangi, A. A., N. Noiseux, D. Kong, H. He, M. Rezvani, and J. S. Ingwall, et al. 2003. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9:1201–1995.

    Article  CAS  Google Scholar 

  13. Makino, S., K. Fukuda, S. Miyoshi, F. Konishi, H. Kodama, J. Pan, et al. 1999. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103:697–705.

    Article  PubMed  CAS  Google Scholar 

  14. Toma, C., M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98.

    Article  PubMed  Google Scholar 

  15. Uemura, R., M. Xu, N. Ahmad, and M. Ashraf. 2006. Bone Marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res. 98:1414–1421.

    Article  PubMed  CAS  Google Scholar 

  16. Hou, M., K.-M. Yang, H. Zhang, W.-Q. Zhu, F.-J. Duan, H. Wang, et al. 2007. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. Int. J. Cardiol. 115:220–228.

    Article  PubMed  Google Scholar 

  17. Nygren, J. M., S. Jovinge, M. Breitbach, P. Sawen, W. Roll, J. Hescheler, et al. 2004. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10:494–501.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, S., D. Wang, Z. Estrov, S. Raj, J. T. Willerson, and E. T. Yeh. 2004. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110:3803–3807.

    Article  PubMed  Google Scholar 

  19. Andrade, J., J. T. Lam, M. Zamora, C. Huang, D. Franco, N. Sevilla, et al. 2005. Predominant fusion of bone marrow-derived cardiomyocytes. Cardiovasc. Res. 68:387–393.

    Article  PubMed  CAS  Google Scholar 

  20. Ohnishi, S., B. Yanagawa, K. Tanaka, Y. Miyahara, H. Obata, M. Kataoka, et al. 2007. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J. Mol. Cell Cardiol. 42:88–97.

    Article  PubMed  CAS  Google Scholar 

  21. DiNicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, et al. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843.

    Article  CAS  Google Scholar 

  22. Tse, W. T., J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan. 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397.

    Article  PubMed  CAS  Google Scholar 

  23. Ono, K., A. Matsumori, T. Shioi, Y. Furukawa, S. Sasayama. 1998. Cytokine gene expression after myocardial infarction in rat hearts. Possible implication in left ventricular remodeling. Circulation 98:149–156.

    PubMed  CAS  Google Scholar 

  24. Sugano, M., K. Tsuchida, T. Hata, and N. Makino. 2004. In vivo transfer of soluble TNF-α receptor 1 gene improves cardiac function and reduces infarct size after myocardial infarction in rats. FASEB J. 18:911–913.

    PubMed  CAS  Google Scholar 

  25. Berry, M. F., J. Woo, T. J. Pirolli, L. T. Bish, M. A. Moise, J. Burdick, et al. 2004. Administration of tumor necrosis factor inhibitor at the time of myocardial infarction attenuates subsequent ventricular remodeling. J. Heart Lung Transplant. 23:1061–1068.

    Article  PubMed  Google Scholar 

  26. Siwik, D. A., D. Chang, and W. S. Colucci. 2000. Interleukin-1beta and tumor necrosis factor alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ. Res. 86:1259–1265.

    PubMed  CAS  Google Scholar 

  27. Peterson, J. T., H. Li, L. Dillon, J. W. Bryant. 2000. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc. Res. 46:307–315.

    Article  PubMed  CAS  Google Scholar 

  28. Lutgens, E., M. J. Daemen, E. D. de Muinck, J. Debets, P. Leenders, and J. F. Smits. 1999. Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc. Res. 41:586–593.

    Article  PubMed  CAS  Google Scholar 

  29. Van Kerckhoven, R., E. A. Kalkman, P. R. Saxena, and R. G. Schoemaker. 2000. Altered cardiac collagen and associated changes in diastolic function of infarcted rat hearts. Cardiovasc. Res. 46:316–323.

    Article  PubMed  Google Scholar 

  30. Xu, X., Z. Xu, Y. Xu, and G. Cui. 2005. Selective down-regulation of extracellular matrix gene expression by bone marrow derived stem cell transplantation into infarcted myocardium. Circ. J. 69:1275–1283.

    Article  PubMed  CAS  Google Scholar 

  31. Jugdutt, B. I. 2003. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108:1043–1395.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jun Cai (Department of Cardiology, Chaoyang Hospital, Peking), Xi Wang, Ping Hu, Yanhong Tang and Hong-gang Chu (Department of Cardiology, Renmin Hospital, Wuhan University School of Medicine, Wuhan, China) for great assistance. This project was supported by department of health of Hubei province (JX3B48), department of education of Hubei province for excellent youth science and tech group(No T200606), department of technology of Hubei province (2005AA301C38-2) and Xianning college (KY0565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-sheng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Lin, Gs., Bao, Cy. et al. Anti-Inflammation Role for Mesenchymal Stem Cells Transplantation in Myocardial Infarction. Inflammation 30, 97–104 (2007). https://doi.org/10.1007/s10753-007-9025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-007-9025-3

Key words

Navigation