Skip to main content

Advertisement

Log in

Clinical and Genetic Characteristics of XIAP Deficiency in Japan

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Deficiency of X-linked inhibitor of apoptosis (XIAP) caused by XIAP/BIRC4 gene mutations is an inherited immune defect recognized as X-linked lymphoproliferative syndrome type 2. This disease is mainly observed in patients with hemophagocytic lymphohistiocytosis (HLH) often associated with Epstein–Barr virus infection. We described nine Japanese patients from six unrelated families with XIAP deficiency and studied XIAP protein expression, XIAP gene analysis, invariant natural killer T (iNKT) cell counts, and the cytotoxic activity of CD8+ alloantigen-specific cytotoxic T lymphocytes. Of the nine patients, eight patients presented with symptoms in infancy or early childhood. Five patients presented with recurrent HLH, one of whom had severe HLH and died after cord blood transplantation. One patient presented with colitis, as did another patient’s maternal uncle, who died of colitis at 4 years of age prior to diagnosis with XIAP deficiency. Interestingly, a 17-year-old patient was asymptomatic, while his younger brother suffered from recurrent HLH and EBV infection. Seven out of eight patients showed decreased XIAP protein expression. iNKT cells from patients with XIAP deficiency were significantly decreased as compared with age-matched healthy controls. These results in our Japanese cohort are compatible with previous studies, confirming the clinical characteristics of XIAP deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BIR:

Baculovirus IAP repeat

CTL:

Cytotoxic T lymphocyte

HSCT:

Hematopoietic stem cell transplantation

HLH:

Hemophagocytic lymphohistiocytosis

IAP:

Inhibitor of apoptosis

LCL:

Lymphoblastoid cell line

MMC:

Mitomycin C

mAb:

Monoclonal antibody

MFI:

Mean fluorescence intensity

iNKT:

Invariant natural killer T

PCR:

Polymerase chain reaction

PBMC:

Peripheral blood mononuclear cells

TCR:

T cell receptor

XIAP:

X-linked inhibitor of apoptosis

XLP:

X-linked lymphoproliferative syndrome

References

  1. Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and Epstein–Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96:3118–25.

    PubMed  CAS  Google Scholar 

  2. Seemayer TA, Gross TG, Egeler RM, Pirruccello SJ, Davis JR, Kelly CM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res. 1995;38:471–8.

    Article  PubMed  CAS  Google Scholar 

  3. Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395:462–9.

    Article  PubMed  CAS  Google Scholar 

  4. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20:129–35.

    Article  PubMed  CAS  Google Scholar 

  5. Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci USA. 1998;95:13765–70.

    Article  PubMed  CAS  Google Scholar 

  6. Gilmour KC, Cranston T, Jones A, Davies EG, Goldblatt D, Thrasher A, et al. Diagnosis of X-linked lymphoproliferative disease by analysis of SLAM-associated protein expression. Eur J Immunol. 2000;30:1691–7.

    Article  PubMed  CAS  Google Scholar 

  7. Rigaud S, Fondanèche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444:110–4.

    Article  PubMed  CAS  Google Scholar 

  8. Uren AG, Pakusch M, Hawkins CJ, Puls KL, Vaux DL. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc Natl Acad Sci USA. 1996;93:4974–8.

    Article  PubMed  CAS  Google Scholar 

  9. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature. 1996;379:349–53.

    Article  PubMed  CAS  Google Scholar 

  10. Duckett CS, Nava VE, Gedrich RW, Clem RJ, van Dongen JL, Gilfillan MC, et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 1996;15:2685–94.

    PubMed  CAS  Google Scholar 

  11. Galbán S, Duckett CS. XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ. 2010;17:54–60.

    Article  PubMed  Google Scholar 

  12. Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;7:1079–82.

    Article  Google Scholar 

  13. Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP-deficiency) versus type 2 (XLP-2/XIAP-deficiency). Blood. 2011;117:1522–9.

    Article  PubMed  Google Scholar 

  14. Zhao M, Kanegane H, Ouchi K, Imamura T, Latour S, Miyawaki T. A novel XIAP mutation in a Japanese boy with recurrent pancytopenia and splenomegaly. Haematologica. 2010;95:688–9.

    Article  PubMed  CAS  Google Scholar 

  15. Filipovich AH, Zhang K, Snow AL, Marsh RA. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood. 2010;116:3398–408.

    Article  PubMed  CAS  Google Scholar 

  16. Marsh RA, Villanueva J, Zhang K, Snow AL, Su HC, Madden L, et al. A rapid flow cytometric screening test for X-linked lymphoproliferative disease due to XIAP deficiency. Cytometry B Clin Cytom. 2009;76:334–44.

    PubMed  Google Scholar 

  17. Marsh RA, Bleesing JJ, Filipovich AH. Using flow cytometry to screen patients for X-linked lymphoproliferative disease due to SAP deficiency and XIAP deficiency. J Immunol Methods. 2010;362:1–9.

    Article  PubMed  CAS  Google Scholar 

  18. Yasukawa M, Ohminami H, Arai J, Kasahara Y, Ishida Y, Fujita S. Granule exocytosis, and not the fas/fas ligand system, is the main pathway of cytotoxity mediated by alloantigen-specific CD4(+) as well as CD8(+) cytotoxic T lymphocytes in humans. Blood. 2000;95:2352–5.

    PubMed  CAS  Google Scholar 

  19. Yanai F, Ishii E, Kojima K, Hasegawa A, Azuma T, Hirose S, et al. Essential roles of perforin in antigen-specific cytotoxity mediated by human CD4+ T lymphocytes: analysis using the combination of hereditary perforin-deficient effector cells and Fas-deficient target cells. J Immunol. 2003;170:2205–13.

    PubMed  CAS  Google Scholar 

  20. Ishii E, Ueda I, Shirakawa R, Yamamoto K, Horiuchi H, Ohga S, et al. Genetic subtypes of familial hemophagocytic lymphohistiocytosis: correlations with clinical features and cytotoxic T lymphocyte/natural killer cell functions. Blood. 2005;105:3442–8.

    Article  PubMed  CAS  Google Scholar 

  21. Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med. 2005;11:340–5.

    Article  PubMed  CAS  Google Scholar 

  22. Pasquier B, Yin L, Fondanéche MC, Relouzat F, Bloch-Queyrat C, Lambert N, et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med. 2005;201:695–701.

    Article  PubMed  CAS  Google Scholar 

  23. Marsh RA, Villanueva J, Kim MO, Zhang K, Marmer D, Risma KA, et al. Patients with X-linked lymphoproliferative disease due to BIRC4 mutation have normal invariant natural killer T-cell populations. Clin Immunol. 2009;132:116–23.

    Article  PubMed  CAS  Google Scholar 

  24. Puck JM, Pepper AE, Bedard PM, Laframboise R. Female germ line mosaicism as the origin of a unique IL-2 receptor gamma-chain mutation causing X-linked severe combined immunodeficienc. J Clin Invest. 1995;95:895–9.

    Article  PubMed  CAS  Google Scholar 

  25. O'Marcaigh A, Puck JM, Pepper AE, Santes KD, Cowan MJ. Maternal mosaicism for a novel interleukin-2 receptor gamma-chain mutation causing X-linked severe combined immunodeficiency in a Navajo kindred. J Clin Immunol. 1997;17:29–33.

    Article  PubMed  Google Scholar 

  26. Sakamoto M, Kanegane H, Fujii H, Tsukada S, Miyawaki T, Shinomiya N. Maternal germinal mosaicism of X-linked agammaglobulinemia. Am J Med Genet. 2001;99:234–7.

    Article  PubMed  CAS  Google Scholar 

  27. Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB. Characterization of XIAP-deficient mice. Mol Cell Biol. 2001;21:3604–8.

    Article  PubMed  CAS  Google Scholar 

  28. Latour S. Natural killer T cells and X-linked lymphoproliferative syndrome. Curr Opin Allergy Clin Immunol. 2007;7:510–4.

    Article  PubMed  Google Scholar 

  29. Schimmer AD, Dalili S, Batey RA, Riedl SJ. Targeting XIAP for the treatment of malignancy. Cell Death Differ. 2006;13:179–88.

    Article  PubMed  CAS  Google Scholar 

  30. Oliveira JB, Notarangelo LD, Fleisher TA. Applications of flow cytometry for the study of primary immune deficiencies. Curr Opin Allergy Clin Immunol. 2008;8:499–509.

    Article  PubMed  Google Scholar 

  31. Kanegane H, Futatani T, Wang Y, Nomura K, Shinozaki K, Matsukura H, et al. Clinical and mutational characteristics of X-linked agammaglobulinemia and its carrier identified by flow cytometric assessment combined with genetic analysis. J Allergy Clin Immunol. 2001;108:1012–20.

    Article  PubMed  CAS  Google Scholar 

  32. Godfrey DI, Berzins SP. Control points in NKT-cell development. Nat Rev Immunol. 2007;7:505–18.

    Article  PubMed  CAS  Google Scholar 

  33. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336.

    Article  PubMed  CAS  Google Scholar 

  34. Bauler LD, Duckett CS, O'Riordan MX. XIAP regulates cytosol-specific immunity to Listeria infection. PLoS Pathog. 2008;4:e1000142.

    Article  PubMed  Google Scholar 

  35. Hersperger AR, Makedonas G, Betts MR. Flow cytometric detection of perforin upregulation in human CD8 T cells. Cytometry A. 2008;73:1050–7.

    PubMed  Google Scholar 

  36. Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell. 2000;103:491–500.

    Article  PubMed  CAS  Google Scholar 

  37. Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA, O'Brien GA, et al. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J. 1996;15:2407–16.

    PubMed  CAS  Google Scholar 

  38. zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85:482–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (H. Kanegane and T. Miyawaki) and grants from the Ministry of Health, Labour, Welfare of Japan (T. Miyawaki), the XLP Reserch Trust (S. Latour) and Agence Nationale pour la Recherche (ANR-08-MIEN-012-01) and an Erasmus MC Fellowship (M.C. van Zelm). We thank Ms. Chikako Sakai and Mr. Hitoshi Moriuchi for their excellent technical assistance. We are also grateful for the support, cooperation, and trust of the patients and their families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Kanegane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Kanegane, H., Nishida, N. et al. Clinical and Genetic Characteristics of XIAP Deficiency in Japan. J Clin Immunol 32, 411–420 (2012). https://doi.org/10.1007/s10875-011-9638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9638-z

Keywords

Navigation