Skip to main content

Advertisement

Log in

Gut ammonia production and its modulation

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Systemic hyperammonemia has been largely found in patients with cirrhosis and hepatic encephalopathy, and ammonia plays a major role in the pathogenesis of hepatic encephalopathy. However, controversial points remain: a) the correlation between plasma ammonia levels and neurophysiological impairment. The lack of correlation between ammonia levels and grade of hepatic encephalopathy in some cases has been considered a weakness of the ammonia hypothesis, but new methods for ammonia measurements and the implication of systemic inflammation in the modulation of ammonia neurotoxicity could explain this gap; b) the source of ammonia production. Hyperammonemia has been considered as derived from urea breakdown by intestinal bacteria and the majority of treatments were targeted against bacteria-derived ammonia from the colon. However, some data suggest an important role for small intestine ammonia production: 1) the hyperammonemia after porto-caval shunted rats has been found similar in germ-free than in non-germ-free animals. 2) In cirrhotic patients the greatest hyperammonemia was found in portal drained viscera and derived mainly from glutamine deamination. 3) The amount of time required to increase of ammonia (less than one hour) after oral glutamine challenge supports a small intestine origin of the hyperammonemia. As the main source of ammonia in cirrhotics derives from portal drained viscera owing to glutamine deamidation, increased glutaminase activity in the intestine seems to be responsible for systemic hyperammonemia. Lastly, some genetic alterations in the glutaminase gene such as the haplotype TACC could modulate intestinal ammonia production and the risk of overt hepatic encephalopathy in cirrhotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794

    Article  PubMed  CAS  Google Scholar 

  • Bernal W, Donaldson P, Underhill J, Wendon J, Williams R (1998) Tumor necrosis factor genomic polymorphism and outcome of acetaminophen (paracetamol)-induced acute liver failure. J Hepatol 29:53–59

    Article  PubMed  CAS  Google Scholar 

  • Campos J, Gonzalez-Quintela A, Quinteiro C, Gude F, Perez LF, Torre JA, Vidal C (2005) The −159C/T polymorphism in the promoter region of the CD14 gene is associated with advanced liver disease and higher serum levels of acute-phase proteins in heavy drinkers. Alcohol Clin Exp Res 29:1206–1213

    Article  PubMed  CAS  Google Scholar 

  • Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V (2007) Inflammation and hepatic encephalopathy: ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 46:514–519

    Article  PubMed  CAS  Google Scholar 

  • Corvera S, Garcia-Sainz JA (1983) Hormonal stimulation of mitochondrial glutaminase. Effects of vasopressin, angiotensin II, adrenaline and glucagons. Biochem J 210:957–960

    PubMed  CAS  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–59

    Article  PubMed  CAS  Google Scholar 

  • Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF (1999) Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics 1:51–62

    PubMed  CAS  Google Scholar 

  • Gabuzda GJ Jr, Phillips GB, Davidson CS (1952) Reversible toxic manifestations in patients with cirrhosis of the liver given cation-exchange resins. N Engl J Med 246:124–130

    Article  PubMed  Google Scholar 

  • Hashimoto N, Ashida H, Kotoura Y, Nishioka A, Nishiwaki M, Utsunomiya J (1993) Analysis of hepatic encephalopathy after distal splenorenal shunt—PTP image and pancreatic hormone kinetics. Hepatogastroenterology 40:360–364

    PubMed  CAS  Google Scholar 

  • Häussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–1480

    PubMed  Google Scholar 

  • Hawkins RA, Jessy J, Mans AM, Chedid A, DeJoseph MR (1994) Neomycin reduces the intestinal production of ammonia from glutamine. Adv Exp Med Biol 368:125–134

    PubMed  CAS  Google Scholar 

  • Jalan R, Kapoor D (2004) Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin Sci (Lond) 106:467–474

    Article  CAS  Google Scholar 

  • James LA, Lunn PG, Elia M (1988) Glutamine metabolism in the gastrointestinal tract of the rat assessed by the relative activity of gutaminase (EC 3.5.1.2) and glutamine synthetase (EC 6.3.1.2). Br J Nutrition 79:365-372

    Article  Google Scholar 

  • James LA, Lunn PG, Middleton S, Elia M (1998) Distribution of glutaminase and glutamine synthase activities in the human gastrointestinal tract. Clin Sci 94:313-319

    PubMed  CAS  Google Scholar 

  • Jover M, Díaz D, Collantes-de-Terán L, Córpas R, Fontiveros E, Parrado J, Bautista JD, Romero-Gómez M (2005) Glutaminase activity is implicated in the pathogenesis of hyperammonemia in porto-caval shunted rats. J Hepatol 42(suppl 1):168A

    Google Scholar 

  • Lewontin RC, Kojima K (1960) The evolutionary dynamics of complex olymorphisms. Evolution 14:450–462

    Google Scholar 

  • Lockwood AH (2004) Blood ammonia levels and hepatic encephalopathy. Metab Brain Dis 19:345–349

    Article  PubMed  CAS  Google Scholar 

  • Lockwood AH (2007) Controversies in ammonia metabolism: implications for hepatic encephalopathy. Metab Brain Dis 22:285–289

    Article  PubMed  Google Scholar 

  • Malaguarnera M, Greco F, Barone G, Gargante MP, Malaguarnera M, Toscano MA (2007) Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Dig Dis Sci 52:3259–3265

    Article  PubMed  Google Scholar 

  • Modi WS, Pollock DD, Mock BA, Banner C, Renauld JC, Van Snick J (1991) Regional localization of the human glutaminase (GLS) and interleukin-9 (IL9)genes by in situ hybridization. Cytogenet Cell Genet 57:114–116

    Article  PubMed  CAS  Google Scholar 

  • Nance FC, Kline DG (1971) Eck’s fistula encephalopathy in germ-free dogs. Ann Surg 174:856–861

    Article  PubMed  CAS  Google Scholar 

  • Olde Damink SW, Jalan R, Redhead DN, Hayes PC, Deutz NE, Soeters PB (2002) Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F, Arroliga AC, Mullen KD (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114(3):188–193 Feb 15

    Article  PubMed  CAS  Google Scholar 

  • Romero Gomez M, Bautista JD, Grande L, Ramos Guerrero RM, Sanchez Munoz D (2004) New concepts in the physiopathology of hepatic encephalopathy and therapeutic prospects. Gastroenterol Hepatol 27(Suppl 1):40–48

    PubMed  Google Scholar 

  • Romero-Gomez M (2005) Role of phosphate-activated glutaminase in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 20:319–325

    Article  PubMed  CAS  Google Scholar 

  • Romero-Gomez M, Grande L, Camacho I (2004a) Prognostic value of altered oral glutamine challenge in patients with minimal hepatic encephalopathy. Hepatology 39:939–943

    Article  PubMed  Google Scholar 

  • Romero-Gomez M, Ramos-Guerrero R, Grande L, de Teran LC, Corpas R, Camacho I, Bautista JD (2004b) Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J Hepatol 41:49–54

    Article  PubMed  CAS  Google Scholar 

  • Romero-Gómez M, Hoyas E, Viloria MM, Jover M, Córpas R, Collantes-de-Terán L, Camacho I, Cruz M, Bautista JD (2005) Oral glutamine challenge response is regulated by portal hypertension and systemic inflammatory response. J Hepatol 42(suppl 1):182A

    Google Scholar 

  • Shawcross DL, Davies NA, Williams R, Jalan R (2004) Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 40:247–254

    Article  PubMed  CAS  Google Scholar 

  • Sherlock S (1987) Chronic portal-systemic encephalopathy: update 1987. Gut 28:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Taylor L, Liu X, Newsome W, Shapiro RA, Srinivasan M, Curthoys NP (2001) Isolation and characterization of the promoter region of the rat kidney-type glutaminase gene. Biochim Biophys Acta 1518:132–136

    PubMed  CAS  Google Scholar 

  • Warren KS, Newton WL (1959) Portal and peripheral blood Ammonia concentrations in germ-free and convencional guinea pigs. Am J Pysiol 197:717–720

    CAS  Google Scholar 

  • Weber FJL, Veach GL (1979) The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology 77:235–240

    PubMed  Google Scholar 

  • Wong D, Dorovini-Zis K, Vincent SR (2004) Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol 190:446–455

    Article  PubMed  CAS  Google Scholar 

  • Wright G, Jalan R (2007) Ammonia and inflammation in the pathogenesis of hepatic encephalopathy: Pandora’s box? Hepatology 46:291–294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Romero-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero-Gómez, M., Jover, M., Galán, J.J. et al. Gut ammonia production and its modulation. Metab Brain Dis 24, 147–157 (2009). https://doi.org/10.1007/s11011-008-9124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-008-9124-3

Keywords

Navigation