Skip to main content

Advertisement

Log in

RSPO fusion transcripts in colorectal cancer in Japanese population

Molecular Biology Reports Aims and scope Submit manuscript

Abstract

R-spondin (RSPO) gene fusions have recently been discovered in a subset of human colorectal cancer (CRC) in the U.S. population; however, whether the fusion is recurrent in CRC arising in patients from the other demographic areas and whether it is specific for CRC remain uncertain. In this study, we examined 75 primary CRCs and 121 primary lung cancers in the Japanese population for EIF3E-RSPO2 and PTPRK-RSPO3 fusion transcripts using RT-PCR and subsequent sequencing analyses. Although the expression of EIF3E-RSPO2 and PTPRK-RSPO3 was not detected in any of the lung carcinomas, RSPO fusions were detected in three (4 %) of the 75 CRCs. Two CRCs contained EIF3E-RSPO2 fusion transcripts, and another CRC contained PTPRK-RSPO3 fusion transcripts. Interestingly, in one of the two EIF3E-RSPO2 fusion-positive CRCs, a novel fusion variant form of EIF3E-RSPO2 was identified: exon 1 of EIF3E was connected to exon 2 of RSPO2 by a 351-bp insertion. A quantitative RT-PCR analysis revealed that RSPO mRNA expression was upregulated in the three CRCs containing RSPO fusion transcripts, while it was downregulated in nearly all of the other CRCs. An immunohistochemical analysis and a mutational analysis revealed that the RSPO fusion-containing CRC had a CDX2 cell lineage, was positive for mismatch repair protein expression, and had the wild-type APC allele. Finally, the forced expression of RSPO fusion proteins were shown to endow colorectal cells with an increased growth ability. These results suggest that the expression of RSPO fusion transcripts is related to a subset of CRCs arising in the Japanese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566. doi:10.1038/nature05945

    Article  CAS  PubMed  Google Scholar 

  2. Shinmura K, Kageyama S, Tao H, Bunai T, Suzuki M, Kamo T, Takamochi K, Suzuki K, Tanahashi M, Niwa H, Ogawa H, Sugimura H (2008) EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer 61:163–169. doi:10.1016/j.lungcan.2007.12.013

    Article  PubMed  Google Scholar 

  3. Shinmura K, Kageyama S, Igarashi H, Kamo T, Mochizuki T, Suzuki K, Tanahashi M, Niwa H, Ogawa H, Sugimura H (2010) EML4-ALK fusion transcripts in immunohistochemically ALK-positive non-small cell lung carcinomas. Exp Ther Med 1:271–275. doi:10.3892/etm_00000042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, Lim Choi Y, Satoh Y, Okumura S, Nakagawa K, Mano H, Ishikawa Y (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18:378–381. doi:10.1038/nm.2658

    Article  CAS  PubMed  Google Scholar 

  5. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Jänne PA, Stephens PJ (2012) Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18:382–384. doi:10.1038/nm.2673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Casaluce F, Sgambato A, Maione P, Rossi A, Ferrara C, Napolitano A, Palazzolo G, Ciardiello F, Gridelli C (2013) ALK inhibitors: a new targeted therapy in the treatment of advanced NSCLC. Target Oncol 8:55–67. doi:10.1007/s11523-012-0250-9

    Article  PubMed  Google Scholar 

  7. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, Chaudhuri S, Guan Y, Janakiraman V, Jaiswal BS, Guillory J, Ha C, Dijkgraaf GJ, Stinson J, Gnad F, Huntley MA, Degenhardt JD, Haverty PM, Bourgon R, Wang W, Koeppen H, Gentleman R, Starr TK, Zhang Z, Largaespada DA, Wu TD, de Sauvage FJ (2012) Recurrent R-spondin fusions in colon cancer. Nature 488:660–664. doi:10.1038/nature11282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yoon JK, Lee JS (2012) Cellular signaling and biological functions of R-spondins. Cell Signal 24:369–377. doi:10.1016/j.cellsig.2011.09.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Shinmura K, Goto M, Suzuki M, Tao H, Yamada H, Igarashi H, Matsuura S, Maeda M, Konno H, Matsuda T, Sugimura H (2011) Reduced expression of MUTYH with suppressive activity against mutations caused by 8-hydroxyguanine is a novel predictor of a poor prognosis in human gastric cancer. J Pathol 225:414–423. doi:10.1002/path.2953

    Article  CAS  PubMed  Google Scholar 

  10. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113. doi:10.1126/science.1145720

    Article  CAS  PubMed  Google Scholar 

  11. Bass AJ, Lawrence MS, Brace LE, Ramos AH, Drier Y, Cibulskis K, Sougnez C, Voet D, Saksena G, Sivachenko A, Jing R, Parkin M, Pugh T, Verhaak RG, Stransky N, Boutin AT, Barretina J, Solit DB, Vakiani E, Shao W, Mishina Y, Warmuth M, Jimenez J, Chiang DY, Signoretti S, Kaelin WG, Spardy N, Hahn WC, Hoshida Y, Ogino S, Depinho RA, Chin L, Garraway LA, Fuchs CS, Baselga J, Tabernero J, Gabriel S, Lander ES, Getz G, Meyerson M (2011) Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet 43:964–968. doi:10.1038/ng.936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhou B, Yan H, Li Y, Wang R, Chen K, Zhou Z, Sun X (2012) PNAS-4 expression and its relationship to p53 in colorectal cancer. Mol Biol Rep 39:243–249. doi:10.1007/s11033-011-0732-3

    Article  CAS  PubMed  Google Scholar 

  13. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483. doi:10.1016/j.cell.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  14. Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 10:5. doi:10.4103/1477-3163.78111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Takeuchi K, Choi YL, Soda M, Inamura K, Togashi Y, Hatano S, Enomoto M, Takada S, Yamashita Y, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y, Mano H (2008) Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res 14:6618–6624. doi:10.1158/1078-0432.CCR-08-1018

    Article  CAS  PubMed  Google Scholar 

  16. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K, Utsunomiya J, Baba S, Hedge P (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669. doi:10.1126/science.1651563

    Article  CAS  PubMed  Google Scholar 

  17. Goel A, Boland CR (2012) Epigenetics of colorectal cancer. Gastroenterology 143(1442–1460):e1. doi:10.1053/j.gastro.2012.09.032

    Google Scholar 

  18. Marcus VA, Madlensky L, Gryfe R, Kim H, So K, Millar A, Temple LK, Hsieh E, Hiruki T, Narod S, Bapat BV, Gallinger S, Redston M (1999) Immunohistochemistry for hMLH1 and hMSH2: a practical test for DNA mismatch repair-deficient tumors. Am J Surg Pathol 23:1248–1255. doi:10.1097/00000478-199910000-00010

    Article  CAS  PubMed  Google Scholar 

  19. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, Panescu J, Fix D, Lockman J, Comeras I, de la Chapelle A (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352:1851–1860. doi:10.1056/NEJMoa043146

    Article  CAS  PubMed  Google Scholar 

  20. Yoon YS, Yu CS, Kim TW, Kim JH, Jang SJ, Cho DH, Roh SA, Kim JC (2011) Mismatch repair status in sporadic colorectal cancer: immunohistochemistry and microsatellite instability analyses. J Gastroenterol Hepatol 26:1733–1739. doi:10.1111/j.1440-1746.2011.06784.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. N. Kurabe and Ms. S. Izumo (Hamamatsu University School of Medicine) for their technical assistance. This work was supported in part by a Grant-in-Aid from the Ministry of Health, Labour and Welfare (21-1), a Grant-in-Aid from the Japan Society for the Promotion of Science (25460476), a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (221S0001), and the Smoking Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Shinmura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinmura, K., Kahyo, T., Kato, H. et al. RSPO fusion transcripts in colorectal cancer in Japanese population. Mol Biol Rep 41, 5375–5384 (2014). https://doi.org/10.1007/s11033-014-3409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3409-x

Keywords

Navigation