Skip to main content

Advertisement

Log in

Polycomb and the Emerging Epigenetics of Pancreatic Cancer

  • Review
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Introduction

The revolution of epigenetics has revitalized cancer research, shifting focus away from somatic mutation toward a more holistic perspective involving the dynamic states of chromatin. Disruption of chromatin organization can directly and indirectly precipitate genomic instability and transformation.

Discussion

One group of epigenetic mediators, the Polycomb group (PcG) proteins, establishes heritable gene repression through methylation of histone tails. Although classically considered regulators of development and cellular differentiation, PcG proteins engage in a variety of neoplastic processes, including cellular proliferation and invasion. Due to their multifaceted potential, PcG proteins rest at the intersection of transcriptional memory and malignancy. Expression levels of PcG proteins hold enormous diagnostic and prognostic value in breast, prostate, and more recently, gastrointestinal cancers.

Conclusion

In this review, we briefly summarize the function of PcG proteins and report the latest developments in understanding their role in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A et al. Cancer statistics. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  2. Wang Z, et al. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol. 8(1):27–33.

  3. Hruban RH et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25(5):579–86.

    Article  CAS  PubMed  Google Scholar 

  4. Jones S et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hruban RH, Adsay NV. Molecular classification of neoplasms of the pancreas. Hum Pathol. 2009;40(5):612–23.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng X, Blumenthal RM. Mammalian DNA methyltransferases: a structural perspective. Structure. 2008;16(3):341–50.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Antequera F, Bird A. CpG islands as genomic footprints of promoters that are associated with replication origins. Curr Biol. 1999;9(17):R661–7.

    Article  CAS  PubMed  Google Scholar 

  8. Schutte M et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57(15):3126–30.

    CAS  PubMed  Google Scholar 

  9. Rosty C et al. p16 Inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitis. Am J Surg Pathol. 2003;27(12):1495–501.

    Article  PubMed  Google Scholar 

  10. Sato N et al. Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res. 2003;63(13):3735–42.

    CAS  PubMed  Google Scholar 

  11. Sato N et al. CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol. 2008;21(3):238–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Omura N, Goggins M. Epigenetics and epigenetic alterations in pancreatic cancer. Int J Clin Exp Pathol. 2009;2(4):310–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Luger K. Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev. 2003;13(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  14. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  15. Chi P, Allis CD, Wang GG. Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 10(7):457–69.

  16. Bottomley MJ. Structures of protein domains that create or recognize histone modifications. EMBO Rep. 2004;5(5):464–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Maurer-Stroh S et al. The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci. 2003;28(2):69–74.

    Article  CAS  PubMed  Google Scholar 

  18. Lomberk G et al. Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol. 2006;8(4):407–15.

    Article  CAS  PubMed  Google Scholar 

  19. Mateescu B et al. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep. 2004;5(5):490–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yamada N et al. MUC1 expression is regulated by DNA methylation and histone H3 lysine 9 modification in cancer cells. Cancer Res. 2008;68(8):2708–16.

    Article  CAS  PubMed  Google Scholar 

  21. Dialynas GK, Vitalini MW, Wallrath LL. Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat Res. 2008;647(1–2):13–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846–56.

    Article  CAS  PubMed  Google Scholar 

  23. Mills AA. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer. 10(10):669–82.

  24. Ku M et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 2008;4(10):e1000242.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cao R et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298(5595):1039–43.

    Article  CAS  PubMed  Google Scholar 

  26. Czermin B et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell. 2002;111(2):185–96.

    Article  CAS  PubMed  Google Scholar 

  27. Jenuwein T et al. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci. 1998;54(1):80–93.

    Article  CAS  PubMed  Google Scholar 

  28. Kuzmichev A et al. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002;16(22):2893–905.

    Article  CAS  PubMed  Google Scholar 

  29. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004;15(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  30. Han Z et al. Structural basis of EZH2 recognition by EED. Structure. 2007;15(10):1306–15.

    Article  CAS  PubMed  Google Scholar 

  31. Tie F et al. The N terminus of Drosophila ESC binds directly to histone H3 and is required for E(Z)-dependent trimethylation of H3 lysine 27. Mol Cell Biol. 2007;27(6):2014–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Denisenko O et al. Point mutations in the WD40 domain of Eed block its interaction with Ezh2. Mol Cell Biol. 1998;18(10):5634–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Margueron R et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 2009;461(7265):762–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Xu C, et al. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci U S A. 107(45):19266–71.

  35. Yamamoto K et al. Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2. J Biol Chem. 2004;279(1):401–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sarma K et al. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol. 2008;28(8):2718–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Tie F et al. The drosophila polycomb group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development. 2001;128(2):275–86.

    CAS  PubMed  Google Scholar 

  38. Schuettengruber B et al. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128(4):735–45.

    Article  CAS  PubMed  Google Scholar 

  39. Kuzmichev A et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA. 2005;102(6):1859–64.

    Article  CAS  PubMed  Google Scholar 

  40. Kuzmichev A et al. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell. 2004;14(2):183–93.

    Article  CAS  PubMed  Google Scholar 

  41. Margueron R et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 2008;32(4):503–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Shao Z et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell. 1999;98(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  43. Vincenz C, Kerppola TK. Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. Proc Natl Acad Sci USA. 2008;105(43):16572–7.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L et al. Hierarchical recruitment of polycomb group silencing complexes. Mol Cell. 2004;14(5):637–46.

    Article  CAS  PubMed  Google Scholar 

  45. Cao R, Tsukada Y, Zhang Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell. 2005;20(6):845–54.

    Article  CAS  PubMed  Google Scholar 

  46. Wang H et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431(7010):873–8.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou W et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell. 2008;29(1):69–80.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Tonini T et al. Ezh2 reduces the ability of HDAC1-dependent pRb2/p130 transcriptional repression of cyclin A. Oncogene. 2004;23(28):4930–7.

    Article  CAS  PubMed  Google Scholar 

  49. Schlesinger Y et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet. 2007;39(2):232–6.

    Article  CAS  PubMed  Google Scholar 

  50. Vire E et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439(7078):871–4.

    Article  CAS  PubMed  Google Scholar 

  51. Kondo Y et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008;40(6):741–50.

    Article  CAS  PubMed  Google Scholar 

  52. Francis NJ et al. Reconstitution of a functional core polycomb repressive complex. Mol Cell. 2001;8(3):545–56.

    Article  CAS  PubMed  Google Scholar 

  53. Dellino GI et al. Polycomb silencing blocks transcription initiation. Mol Cell. 2004;13(6):887–93.

    Article  CAS  PubMed  Google Scholar 

  54. Sing A et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell. 2009;138(5):885–97.

    Article  CAS  PubMed  Google Scholar 

  55. Woo CJ, et al. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell. 140(1):99–110.

  56. Brown JL et al. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development. 2003;130(2):285–94.

    Article  CAS  PubMed  Google Scholar 

  57. Wilkinson F, Pratt H, Atchison ML. PcG recruitment by the YY1 REPO domain can be mediated by Yaf2. J Cell Biochem. 109(3):478–86.

  58. Haupt Y et al. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell. 1991;65(5):753–63.

    Article  CAS  PubMed  Google Scholar 

  59. Jacobs JJ et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 1999;13(20):2678–90.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang FB, Sui LH, Xin T. Correlation of Bmi-1 expression and telomerase activity in human ovarian cancer. Br J Biomed Sci. 2008;65(4):172–7.

    CAS  PubMed  Google Scholar 

  61. Qin ZK et al. Expression of Bmi-1 is a prognostic marker in bladder cancer. BMC Cancer. 2009;9:61.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Saeki M et al. Diagnostic importance of overexpression of Bmi-1 mRNA in early breast cancers. Int J Oncol. 2009;35(3):511–5.

    CAS  PubMed  Google Scholar 

  63. Kleer CG et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003;100(20):11606–11.

    Article  CAS  PubMed  Google Scholar 

  64. Varambally S et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9.

    Article  CAS  PubMed  Google Scholar 

  65. Bohrer LR, et al. Androgens suppress EZH2 expression via retinoblastoma (RB) and p130-dependent pathways: a potential mechanism of androgen-refractory progression of prostate cancer. Endocrinology. 151(11):5136–45.

  66. Bracken AP et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 2003;22(20):5323–35.

    Article  CAS  PubMed  Google Scholar 

  67. Kotake Y et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev. 2007;21(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  68. Shi B et al. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol. 2007;27(14):5105–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Tang X et al. Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene. 2004;23(34):5759–69.

    Article  CAS  PubMed  Google Scholar 

  70. Bryant RJ et al. EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate. 2007;67(5):547–56.

    Article  CAS  PubMed  Google Scholar 

  71. Cao Q et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27(58):7274–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Fujii S, Ochiai A. Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Sci. 2008;99(4):738–46.

    Article  CAS  PubMed  Google Scholar 

  73. Lu C, et al. Regulation of tumor angiogenesis by EZH2. Cancer Cell. 18(2):185–97.

  74. Zeidler M, Kleer CG. The polycomb group protein enhancer of Zeste 2: its links to DNA repair and breast cancer. J Mol Histol. 2006;37(5–7):219–23.

    Article  CAS  PubMed  Google Scholar 

  75. Zeidler M et al. The polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia. 2005;7(11):1011–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Tonini T et al. Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements. J Cell Physiol. 2008;214(2):295–300.

    Article  CAS  PubMed  Google Scholar 

  77. Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 7(3):299–313.

  78. Jiang L, Li J, Song L. Bmi-1, stem cells and cancer. Acta Biochim Biophys Sin (Shanghai). 2009;41(7):527–34.

    Article  CAS  Google Scholar 

  79. Lee TI et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006;125(2):301–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Molofsky AV et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425(6961):962–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Ohm JE et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39(2):237–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Martinez-Romero C et al. The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. J Pathol. 2009;219(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  83. Tschen SI et al. Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes. 2009;58(6):1312–20.

    Article  CAS  PubMed  Google Scholar 

  84. Dhawan S, Tschen SI, Bhushan A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes Dev. 2009;23(8):906–11.

    Article  CAS  PubMed  Google Scholar 

  85. Sangiorgi E, Capecchi MR. Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc Natl Acad Sci USA. 2009;106(17):7101–6.

    Article  CAS  PubMed  Google Scholar 

  86. Guerra C et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302.

    Article  CAS  PubMed  Google Scholar 

  87. Chen H et al. Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 2009;23(8):975–85.

    Article  CAS  PubMed  Google Scholar 

  88. van Arensbergen J, et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res. 20(6):722–32.

  89. Gunster MJ et al. Differential expression of human Polycomb group proteins in various tissues and cell types. J Cell Biochem Suppl. 2001;Suppl 36:129–43.

    Article  CAS  PubMed  Google Scholar 

  90. Sanchez-Beato M et al. Variability in the expression of polycomb proteins in different normal and tumoral tissues. A pilot study using tissue microarrays. Mod Pathol. 2006;19(5):684–94.

    Article  CAS  PubMed  Google Scholar 

  91. Martínez-Romero C, et al. The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. J Pathol. 2009;205–13.

  92. Song W, et al. Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci. 101(7):1754–60.

  93. Wellner U et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.

    Article  CAS  PubMed  Google Scholar 

  94. Li Y et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Karamitopoulou E, et al. Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer. 46(8):1438–44.

  96. Bezsonova I et al. Ring1B contains a ubiquitin-like docking module for interaction with Cbx proteins. Biochemistry. 2009;48(44):10542–8.

    Article  CAS  PubMed  Google Scholar 

  97. Maertens GN et al. Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS ONE. 2009;4(7):e6380.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Ougolkov AV, Bilim VN, Billadeau DD. Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin Cancer Res. 2008;14(21):6790–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Chen Y, et al. RNAi targeting EZH2 inhibits tumor growth and liver metastasis of pancreatic cancer in vivo. Cancer Lett. 297(1):109–16.

  100. Sato N et al. Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clin Cancer Res. 2005;11(13):4681–8.

    Article  CAS  PubMed  Google Scholar 

  101. Fujii S et al. Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem. 2008;283(25):17324–32.

    Article  CAS  PubMed  Google Scholar 

  102. Wada M et al. Frequent loss of RUNX3 gene expression in human bile duct and pancreatic cancer cell lines. Oncogene. 2004;23(13):2401–7.

    Article  CAS  PubMed  Google Scholar 

  103. Toll AD, et al. Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma. Hum Pathol. 41(9):1205–9.

  104. Winter JM et al. Absence of E-cadherin expression distinguishes noncohesive from cohesive pancreatic cancer. Clin Cancer Res. 2008;14(2):412–8.

    Article  CAS  PubMed  Google Scholar 

  105. Wei Y et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 2008;47(9):701–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Cha TL et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005;310(5746):306–10.

    Article  CAS  PubMed  Google Scholar 

  107. Li C et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.

    Article  CAS  PubMed  Google Scholar 

  108. Hermann PC et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.

    Article  CAS  PubMed  Google Scholar 

  109. Marechal R et al. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma. Br J Cancer. 2009;100(9):1444–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Singh S, et al. CXCL12-CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells: a novel target for therapy. Br J Cancer. 103(11):1671–9.

  111. Bayraktar S, Bayraktar UD, Rocha-Lima CM. Recent developments in palliative chemotherapy for locally advanced and metastatic pancreas cancer. World J Gastroenterol. 16(6):673–82.

  112. Shah AP, Strauss JB, Abrams RA. Review and commentary on the role of radiation therapy in the adjuvant management of pancreatic cancer. Am J Clin Oncol. 33(1):101–6.

  113. J Tan, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007, p. 1050–63

  114. Miranda TB et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 2009;8(6):1579–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Chen DH et al. Effects of adenosine dialdehyde treatment on in vitro and in vivo stable protein methylation in HeLa cells. J Biochem. 2004;136(3):371–6.

    Article  CAS  PubMed  Google Scholar 

  116. A Kirmizis, SM Bartley, PJ Farnham. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther. 2003. p. 113–21

  117. Pizzatti L, et al. SUZ12 is a candidate target of the non-canonical WNT pathway in the progression of chronic myeloid leukemia. Genes Chromosomes Cancer 49(2):107–18.

  118. Liu S et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.

    Article  CAS  PubMed  Google Scholar 

  119. Rao PS et al. RNF2 is the target for phosphorylation by the p38 MAPK and ERK signaling pathways. Proteomics. 2009;9(10):2776–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by National Institutes of Health Grants T32CA148073, DK52913, and DK058185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Urrutia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzenda, A., Ordog, T. & Urrutia, R. Polycomb and the Emerging Epigenetics of Pancreatic Cancer. J Gastrointest Canc 42, 100–111 (2011). https://doi.org/10.1007/s12029-011-9262-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-011-9262-4

Keywords

Navigation