Elsevier

Genomics

Volume 91, Issue 6, June 2008, Pages 508-511
Genomics

Functional classification analysis of somatically mutated genes in human breast and colorectal cancers

https://doi.org/10.1016/j.ygeno.2008.03.002Get rights and content
Under an Elsevier user license
open archive

Abstract

A recent study published by Sjoblom and colleagues [T. Sjoblom, S. Jones, L.D. Wood, D.W. Parsons, J. Lin, T.D. Barber, D. Mandelker, R.J. Leary, J. Ptak, N. Silliman, S. Szabo, P. Buckhaults, C. Farrell, P. Meeh, S.D. Markowitz, J. Willis, D. Dawson, J.K. Willson, A.F. Gazdar, J. Hartigan, L. Wu, C. Liu, G. Parmigiani, B.H. Park, K.E. Bachman, N. Papadopoulos, B. Vogelstein, K.W. Kinzler, V.E. Velculescu, The consensus coding sequences of human breast and colorectal cancers. Science 314 (2006) 268-274.] performed comprehensive sequencing of 13,023 human genes and identified mutations in genes specific to breast and colorectal tumors, providing insight into organ-specific tumor biology. Here we present a systematic analysis of the functional classifications of Sjoblom's “CAN” genes, a subset of these validated mutant genes, that identifies novel organ-specific biological themes and molecular pathways associated with disease-specific etiology. This analysis links four somatically mutated genes associated with diverse oncological types to colorectal and breast cancers through established TGF-β1-regulated interactions, revealing mechanistic differences in these cancers and providing potential diagnostic and therapeutic targets.

Keywords

Breast cancer
Colorectal cancer
Genomics
Bioinformatics

Cited by (0)

1

These authors contributed equally to this work.