Skip to main content
Log in

Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The enteric flora comprise approximately 95% of the total number of cells in the human body and are capable of eliciting immune responses while also protecting against microbial pathogens. However, the resident bacterial flora of the gastrointestinal tract (GIT) may also be implicated in the pathogenesis of several chronic conditions such as inflammatory bowel disease (IBD). The University College Cork-based Probiotic Research Group has successfully isolated and identified lactic acid bacteria (LAB) which exhibit beneficial probiotic traits. These characteristics include the demonstration of bile tolerance; acid resistance; adherence to host epithelial tissue; and in vitro antagonism of potentially-pathogenic micro-organisms or those which have been implicated in promoting inflammation. The primary objective of this report is to describe the strategy adopted for the selection of potentially effective probiotic bacteria. The study further describes the evaluation of two m embers of the resulting panel of micro-organisms (Lactobacillus salivarius subsp. salivarius UCC118 and Bifidobacterium longum infantis 35624) under in vitro conditions and throughout in vivo murine and human feeding trials. Specifically, an initial feeding study completed in Balb/c mice focused upon (i) effective delivery of the probiotic micro-organisms to the GIT and evaluation of the ability of the introduced strains to survive transit through, and possibly colonise, the murine GIT; (ii) accepting the complexity of the hostile GIT and faecal environments, development of a method of enumerating the introduced bacterial strains using conventional microbiological techniques; and (iii) assessment of the effects of administered bacterial strains on the numbers of specific recoverable indigenous bacteria in the murine GIT and faeces. Additional research, exploiting the availability of murine models of inflammatory bowel disease, demonstrated the beneficial effects of administering probi otic combinations of Lactobacillus salivarius UCC118 and Bifidobacterium longum infantis 35624 in prevention of illness-related weight loss. A further ethically-approved feeding trial, successfully conducted in 80 healthy volunteers, demonstrated that yoghurt can be used as a vehicle for delivery of Lactobacillus salivarius strain UCC118 to the human GIT with considerable efficacy in influencing gut flora and colonisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abee T, Klaenhammer TR & Letellier L (1994) Kinetic studies of the action of Lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol. 60: 1006-1013

    Google Scholar 

  • Alander M, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T & von Wright A (1997) Recovery of Lactobacillius rhamnosus GG from human colonic biopsies. Lett. Appl. Microbiol. 24: 361-364

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990)Basic local alignment search tool. J. Mol. Biol. 215: 403-410

    Google Scholar 

  • Aranda R, Sydora B, McAllister PL, Binder SW, Ying Yang H, Targan SR & Kronenberg M (1997) Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45 RB highT cells to SCID recipients. J. Immunol. 3464-3473

  • Aso Y & Akazan H (1992) Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. Urol. Int. 49: 125-129

    Google Scholar 

  • Bartram HP, Scheppach W, Gerlach S, Ruckdeschel G, Kelber E & Kasper H (1994) Does yogurt enriched with Bifidobacterium longum affect colonic microbiology and fecal metabolites in healthy subjects? Am. J. Clin. Nutr. 59: 428-432

    Google Scholar 

  • Berg RD (1998) Probiotics, prebiotics or'conbiotics'. Trends Microbiol. 6: 89-92

    Google Scholar 

  • Bernet M-F, Brassart D, Neeser J-R & Servin AL (1993) Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl. Environ. Microbiol. 59: 4121-4128

    Google Scholar 

  • Bernet MF, Brassart D, Neeser JR & Servin AL (1994) Lactobacillus acidophilus LA-1 binds to cultured human intestinal cell-lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35: 483-489

    Google Scholar 

  • Brassart D, Schiffrin E, Rochat F, Offord EA, Macé C & Neeser J-R (1998) The future of functional foods: Scientific basis and future requirements. Lebensmittel Technol. 7-8: 258-266

    Google Scholar 

  • Coconnier M-H, Klaenhammer TR, Kerneis S, Bernet M-F & Servin AL (1992) Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl. Environ. Microbiol. 58: 2034-2039

    Google Scholar 

  • Collins JK, Thornton G & Sullivan GD (1998) Selection of probiotic strains for human applications. Int. Dairy J. 8: 487-490

    Google Scholar 

  • Cornwell GG, Sletten K, Johansson B & Westermark P (1988) Evidence that the amyloid fibril protein in senile systemic amyloidosis is derived from normal prealbumin. Biochem. Biophys. Res. Commun. 154: 648-653

    Google Scholar 

  • Crociani J, Grill J-P, Huppert M & Ballongue J (1995) Adhesion of different bifidobacteria strains to human enterocyte-like Caco-2 cells and comparison with in vivo study. Lett. Appl. Microbiol. 21: 146-148

    Google Scholar 

  • Daly C & Davis R (1998) The biotechnology of lactic acid bacteria with emphasis on applications in food safety and human health. Agricultural Food Sci. in Finland 7: 251-265

    Google Scholar 

  • De Man JC, Rogosa M & Sharpe MT (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135

    Google Scholar 

  • Dodd HM & Gasson MJ (1994) Bacteriocins of lactic acid bacteria. In: Gasson MJ & de Vos WM (Eds) Genetics and biotechnology of lactic acid bacteria (pp 211-251). Blackie Academic and Professional, Glasgow

    Google Scholar 

  • Draser BS, Shiner M & McLeod GM (1969) Studies on the intestinal flora 1. The bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterol. 56: 71-79

    Google Scholar 

  • Dunne C, O'Halloran S, O'Mahony L, Feeney M, Kiely B, von Wright A, Vilpoonen-Salmela T, Shanahan F, O'Sullivan G & Collins JK (1999) Epithelial adhesion of probiotic microorganisms in vitro and in vivo. Gastroenterol. 116:4 (2): G3058

    Google Scholar 

  • Favier C, Neut C, Mizon C, Cortot A, Colombel JF & Mizon J (1997) Fecal B-D-Galactosidase production and bifidobacteria are decreased in Crohn's disease. Dig. Dis. Sci. 42: 817-822

    Google Scholar 

  • Floch MH, Binder HJ, Filburn B & Gershengoren W (1972) The effect of bile acids on intestinal microflora. Am. J. Clin. Nutr. 25: 1418-1426

    Google Scholar 

  • Fuller R (1989) A review: probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378

    Google Scholar 

  • Fonty G, Raibaud P & Gouet P (1993) Manipulation of the gut microflora: experimental approach in animals. Proc. Nutr. Soc. 52: 345-356

    Google Scholar 

  • Fykse EM, Sletten K, Husby G & Cornwell GG (1988)The primary structure of the variable region of an immunoglobulin IV light-chain amyloid-fibril protein (AL GIL). Biochem. J. 256: 973-980

    Google Scholar 

  • Goldin BR & Gorbach SL (1992) Probiotics for humans. In: Fuller R (Ed) Probiotics, the scientific basis (pp 355-376). Chapman and Hall, London

    Google Scholar 

  • Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L & Salminen S (1992) Survival of Lactobacillus species (Strain GG) in human gastrointestinal tract. Dig. Dis. Sci. 37: 121-128

    Google Scholar 

  • Greene JD & Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60: 4487-4494

    Google Scholar 

  • Guarner F & Schaafsma GJ (1998) Probiotics. Int. J. Food Microbiol. 39: 237-238

    Google Scholar 

  • Hill MJ & Draser BS (1968) Degradation of bile salts by human intestinal bacteria. Gut 9: 22-27

    Google Scholar 

  • Hoffman AF, Molino G, Milanese M & Belforte G (1983) Description and stimulation of a physiological pharmokinetic model for the metabolism and enterohepatic circulation of bile acids in man. J. Clin. Invest. 71: 1003-1022

    Google Scholar 

  • Huis in't Veld J & Shortt C (1996) Selection criteria for probiotic micro-organisms. In: Leeds AR & Rowland IR (Eds) Gut Flora and Health — Past, Present and Future (pp 19-26). The Royal Society of Medicine Press Ltd, London

    Google Scholar 

  • Hylemon PB & Glass TL (1983) Biotransformation of bile acids and cholesterol by the intestinal microflora. In: Hentges DJ (Ed) Human intestinal microflora in health and disease (pp 189-213). Academic Press, New York

    Google Scholar 

  • Isolauri E, Juntunen M, Saxelin M & Vesikari T (1995) Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J. Pediatr. Gastroenterol. 20: 333-336

    Google Scholar 

  • Jack RW, Tagg JR & Ray B (1995) Bacteriocins of Gram positive bacteria. Microbiol. Rev. 59: 171-200

    Google Scholar 

  • Kandler O & Weiss N (1986) Regular, non-sporing Gram positive rods. In: Sneath PHA, Mair N, Sharpe ME & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology (pp 2: 1208-1234) Williams and Wilkins, Baltimore

    Google Scholar 

  • Kerneis S, Bilge SS, Fourel V, Chauviere G, Coconnier M-H & Servin AL (1991) Use of purified F1845 fimbrial adhesin to study localization and expression of receptors for diffusely adhering Escherichia coli during enterocytic differentiation of human colon carcinoma cell lines HT-29 and Caco-2 in culture. Infect. Immun. 59: 4013-4018

    Google Scholar 

  • Lee Y-K & Salminen S (1995) The coming age of probiotics. Trends Food Sci. Technol. 6: 241-245

    Google Scholar 

  • Lewis R & Gorbach S (1972) Modification of bile acids by intestinal bacteria. Arch. Intern. Med. 130: 545-549

    Google Scholar 

  • Lidbeck A, Overnick E, Rafter J, Nord CE & Gustaffsson JA (1992) Effect of Lactobacillus acidophilus supplements on mutagen excretion in faeces and urine in humans. Micro. Ecol. Health. Dis. 5: 59-67

    Google Scholar 

  • Marteau P, Flourie B, & Pochart P et al. (1990) Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am. J. Clin. Nutr. 52: 685-688

    Google Scholar 

  • Marteau P & Rambaud J-C (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12: 207-220

    Google Scholar 

  • Mattila-Sandholm T (1997) Demonstration Project FAIR CT96-1028. In: Alander M, Kauppila T & Mattila-Sandholm T (Eds) Novel methods for probiotic research: 2nd workshop demonstration of the nutritional functionality of probiotic foods FAIR CT96-1028 (pp 11-17). Technical Research Centre of Finland (VTT)

  • McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P & Abee T (1998) Lanticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol. 64: 439-445

    Google Scholar 

  • McCracken VJ & Gaskins HR (1999) Probiotics a critical review. Horizon Scientific Press, UK

    Google Scholar 

  • Millar MR, Bacon C, Smith SL, Walker V & Hall MA (1993) Enteral feeding of premature infants with Lactobacillus GG. Arch. Dis. Child. 69: 483-487

    Google Scholar 

  • Mitsuoka T (1984) Taxonomy and ecology of bifidobacteria. Bifidobacteria Microflora 3: 11-28

    Google Scholar 

  • Molin G, Jeppsson B & Johansson ML et al. (1993) Numerical taxonomy of Lactobacillus sp. associated with healthy and diseased mucosa of the human intestines. J. Appl. Bacteriol. 1993: 74: 314-323

    Google Scholar 

  • Morotomi M, Watanabe T, Suegara N, Kawai Y & Mutai M (1975) Distribution of indigenous bacteria in the digestive tract of conventional and gnotobiotic rats. Infect. Immun. 11: 962-968

    Google Scholar 

  • Morrisey PJ, Charrier K, Braddy S, Liggitt D & Watson JD (1993) CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J. Exp. Med. 178: 237-244

    Google Scholar 

  • Murphy L, Dunne C, Kiely B, Shanahan F, O'Sullivan GC & Collins JK (Submitted) In vivo assessment of potential probiotic Lactobacillus salivarius strains: evaluation of their establishment, persistence, and localisation in the murine gastrointestinal tract

  • Neeser J-R, Chambaz A, Golliard M, Link-Amster H, Fryder V & Kolodziejczyk E (1989) Adhesion of colonisation factor antigen II-positive enterotoxigenic Escherichia coli strains to human enterocytelike differentiated HT-29 cells: a basis for host-pathogen interactions in the gut. Infect. Immun. 57: 3727-3734

    Google Scholar 

  • Neutra MR & Kraehenbuhl J-P (1996) Essentials of mucosal immunology. Academic Press, San Diego

    Google Scholar 

  • Oksanen PI, Salminen S & Saxelin M et al. (1990) Prevention of traveller's diarrhea by Lactobacillus GG. Ann. Med. 22: 53-56

    Google Scholar 

  • O'Riordan K & Fitzgerald GF (1997) Determination of genetic diversity within the genus Bifidobacterium and estimation of chromosomal size. FEMS Microbiol. Lett. 156: 259-264

    Google Scholar 

  • O'Sullivan MG, Thornton GM, O'Sullivan GC & Collins JK (1992) Probiotic bacteria: myth or reality? Trends Food Sci. Technol. 3: 309-314

    Google Scholar 

  • Ouwehand AC (1998) Antimicrobial components from lactic acid bacteria. In: Salminen S & von Wright A (Eds) Lactic acid bacteria: Microbiology and functional aspects, 2nd edition (pp 139-160). Marcel Dekker Inc., New York

    Google Scholar 

  • Pedrosa MC, Golner BB, Goldin BR, Barakat S, Dallal GE & Russell RM (1995) Survival of yogurt-containing organisms and Lactobacillus gasseri (ADH) and their effect on bacterial enzyme activity in the gastrointestinal tract of healthy and hypochlorhydric elderly subjects. Am. J. Clin. Nutr. 61: 353-359

    Google Scholar 

  • Percy-Robb IW & Collee JG (1972) Bile acids: a pH dependent antibacterial system in the gut? Brit. Med. J. 3: 813-815

    Google Scholar 

  • Salminen S, Deighton MA & Gorbach SL (1993) Lactic acid bacteria in health and disease. In: Salminen S. & von Wright A (Eds) Lactic acid bacteria (pp 199-225). Marcel Dekker Inc., New York

    Google Scholar 

  • Salminen S, Isolauri E & Onnela T (1995) Gut microflora in health and disease. Chemotherapy 41(suppl 1): 5-15

    Google Scholar 

  • Salminen S, Isolauri E & Salminen E (1996) Clinical uses of probiotics for stabilising the gut mucosal barrier: successful strains and future challenges. Antonie van Leeuwenhoek 70: 251-262

    Google Scholar 

  • Salminen S, Deighton MA, Benno Y & Gorbach SL (1998a) Lactic acid bacteria in health and disease. In: Salminen S. & von Wright A (Eds) Lactic acid bacteria: Microbiology and functional aspects, 2nd edition (pp 211-254). Marcel Dekker Inc., New York

    Google Scholar 

  • Salminen S, Bouley C, Boutron-Ruault M-C, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau M-C, Roberfroid M & Rowland I (1998b) Functional food science and gastrointestinal physiology and function. Brit. J. Nutr. 80(suppl 1): s147-s171

    Google Scholar 

  • Sarem F, Sarem-Damerdji LO & Nicolas JP (1996) Comparison of the adherence of three Lactobacillus strains to Caco-2 and Int-407 human intestinal cell lines. Lett. Appl. Microbiol. 22: 439-442

    Google Scholar 

  • Savage DC (1997) Microbial Ecology of the Gut. Academic Press, London

    Google Scholar 

  • Saxelin M (1997) Lactobacillus GG — a human probiotic strain with thorough clinical documentation. Food Reviews Int. 13: 293-313

    Google Scholar 

  • Schaafsma G (1995) Application of lactic acid bacteria in novel foods from a nutritional perspective. In: Novel G & Le Querler J-F (Eds) Lactic acid bacteria: Actes du Colloque LACTIC 94 (pp 85-93). Presses Universitaires de Caen

  • Sepp E, Mikelsaar M & Salminen S (1993) Effect of administration of Lactobacillus casei strain GG on the gastrointestinal microbiota of newborns. Microbiol. Ecol. Health Dis. 6: 309-314

    Google Scholar 

  • Shanahan F (1994) Physiology of the gastrointestinal tract. Raven Press

  • Shimada K, Bricknell KS & Finegold SM (1969) Deconjugation of bile acids by intestinal bacteria: a review of literature and additional studies. J. Infect. Dis. 119: 73-81

    Google Scholar 

  • Siitonen S, Vapautalo H & Salminen S et al. (1990) Effect of Lactobacillus GG yogurt in prevention of antibiotic-associated diarrhea. Ann. Med. 22: 57-59

    Google Scholar 

  • Sletten K & Husby G (1974) The complete amino acid sequence of non-immunoglobulin amyloid proteins AS in rheumatoid arthritis. Eur. J. Biochem. 41: 117-125

    Google Scholar 

  • Spanhaak S, Havenaar R & Schaafsma G (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur. J. Clin. Nutr. 52: 899-907.

    Google Scholar 

  • Stewart L, Pellegrini CA & Way LW (1986) Antibacterial activity of bile acids against common biliary tract organisms. Surg. Forum 37: 157-159

    Google Scholar 

  • Tagg JR & McGiven AR (1971)Assay systems for bacteriocins. App. Microbiol.21:943

    Google Scholar 

  • Tannock GW (1997) Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. TIBTECH 15: 270-274

    Google Scholar 

  • Thornton GM (1996) Probiotic bacteria. Selection of Lactobacillus and Bifidobacterium strains from the healthy human gastrointestinal tract; characterisation of a novel Lactobacillus-derived antibacterial protein. (Thesis). National University of Ireland

  • Tuomola (née Lehto) EM & Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 41: 45-51

    Google Scholar 

  • Wostmann BS (1996) Germfree and gnotobiotic animal models. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kevin Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunne, C., Murphy, L., Flynn, S. et al. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek 76, 279–292 (1999). https://doi.org/10.1023/A:1002065931997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002065931997

Keywords

Navigation