Skip to main content
Log in

Antibodies as Carrier Proteins

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Pre-existing antibodies against a drug substance can significantly alter the pharmacokinetic profile of the drug in the circulation. Rapid clearance, mediated by complement or Fc receptors, occurs for crosslinked immune complexes, but not for complexes containing only one or two antibodies. With antibodies functioning as carrier proteins, monovalent antigens may enjoy a prolonged circulatory half-life, as observed in the case of digoxin, insulin, and various interleukins. While such an effect should be highly sensitive to fluctuations in antibody affinity and titer, it may present a means of extending the circulation of potent but rapidly cleared therapeutic agents. This mini-review attempts to delineate the causal relation between the factors influencing antibody binding and the circulatory life of a therapeutic agent, be it a small drug or a macromolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Gibaldi. Biopharmaceutics and Clinical Pharmacokinetics, Lea and Febiger, Philadelphia, 1991.

    Google Scholar 

  2. W. Gregorio. Protein Interactions, Chapman and Hall, New York, 1992.

    Google Scholar 

  3. G. Winter and W. J. Harris. Humanized antibodies. Trends Pharmacol. Sci. 14:139–143 (1993).

    Google Scholar 

  4. Janeway and Travers. Immunobiology, 3rd Edition, Garland Press, 1997.

  5. K. Rajewsky. In I. M. Roitt and P. J. Delves (eds.), Encyclopedia of Immunology, Academic Press, New York, 1992, pp. 40–41.

    Google Scholar 

  6. R. W. Lightfoot, R. E. Drusin, and C. L. Christian. Properties of soluble immune complexes. J. Immunol. 105:1493–1500 (1970).

    Google Scholar 

  7. M. Pascual and J. A. Schifferli. The binding of immune complexes by the erythrocyte complement receptor 1 (CR1). Immunopharmacology 24:101–106 (1992).

    Google Scholar 

  8. M. J. Walprot and K. A. Davies. Complement and immune complexes. Res. Immunol. 147:103–109 (1996).

    Google Scholar 

  9. K. A. Davies, K. Erlendsson, H. L. C. Beynon, A. M. Peters, K. Steinsson, H. Valdimarsson, and M. J. Walport. Splenic uptake of immune complexes in man is complement-dependent. J. Immunol. 151:3866–3873 (1993).

    Google Scholar 

  10. G. R. Strohmeier, B. A. Brunkhorst, K. F. Seetoo, T. Meshulam, J. Bernardo, and E. R. Simons. Role of the FCγR subclasses FcγRII and FcγRIII in the activation of human neutrophils by low and high valency immune complexes. J. Leukocyte Biol. 58:415–422 (1995).

    Google Scholar 

  11. M. Head, N. Meryhew, and O. Runquist. Mechanism and computer simulation of immune complex formation, opsonization, and clearance. J. Lab. Clin. Med. 128:61–74 (1996).

    Google Scholar 

  12. A. Rascu, R. Repp, N. A. C. Westerdaal, J. R. Kalden, and J. G. J. van de Winkel. Clinical relevance of Fcγ receptor polymorphisms. Annals N.Y. Acad. Sci. 815:282–295 (1997).

    Google Scholar 

  13. M. Mannik, A. O. Haakenstad, W. P. Arend. The fate and detection of circulating immune complexes. Prog. in Immunol. II 5:91–101 (1974).

    Google Scholar 

  14. T. Skogh, O. Stendahl, T. Sundqvist, and L. Edebo. Physiochemical properties and blood clearance of human serum albumin conjugated to different extents with dinitrophenyl groups. Int. Arch. Allergy Appl. Immun. 70:238–241 (1983).

    Google Scholar 

  15. D. H. Schmidt, B. M. Kaufman, and V. P. Butler. Persistence of hapten-antibody complexes in the circulation after a single intravenous injection of hapten. J. Exp. Med. 139:278–294 (1974).

    Google Scholar 

  16. V. P. Butler, D. H. Schmidt, T. W. Smith, E. Haber, B. D. Raynor, and P. Demartini. Effects of sheep digoxin-specific antibodies and their Fab fragments on digoxin pharmacokinetics in dogs. J. Clin. Invest. 59:345–359 (1984).

    Google Scholar 

  17. N. M. Griffiths, D. S. Hewick, and I. H. Stevenson. The effect of immunization with digoxin-specific antibodies on digoxin disposition in the mouse. Biochem. Pharmacol. 33:3041–3046 (1984).

    Google Scholar 

  18. M. P. Timsina and D. S. Hewick. The plasma disposition and renal elimination of digoxin-specific Fab fragments and digoxin in the rabbit. J. Pharm. Pharmacol. 44:796–800 (1992).

    Google Scholar 

  19. N. M. Griffiths, D. S. Hewick, and I. H. Stevenson. The serum pharmacokinetics of digoxin as an immunogen and hapten in the rabbit. Int. J. Immunopharmac. 7:697–703 (1985).

    Google Scholar 

  20. M. R. Ujhelyi, S. Tobert, D. M. Cummings, R. D. Colucci, P. J. Green, J. Saistad, P. H. Vlasses, and B. J. Zarowitz. Influence of digoxin immune Fab therapy and renal dysfunction on the disposition of total and free digoxin. Ann. Intern. Med. 119:273–277 (1993).

    Google Scholar 

  21. J. L. Valentine and S. M. Owens. Antiphencyclidine monoclonal antibody therapy significantly changes phencyclidine concentrations in brain and other tissues in rats. J. Pharmaco. Exp. Ther. 278:717–724 (1996).

    Google Scholar 

  22. J. M. Scherrmann, M. Urtizberea, P. Pierson, and N. Terrien. The effect of colchicine-specific active immunization on colchicine toxicity and disposition in the rabbit. Toxicology 56:213–222 (1989).

    Google Scholar 

  23. A. Peters, O. Klose, R. Hefty, F. Keck, and W. Kemer. The influence of insulin antibodies on the pharmacokinetics of NPH insulin in patients with type 1 diabetes treated with human insulin. Diabetic Med. 12:925–930 (1995).

    Google Scholar 

  24. G. B. Bolli, G. D. Dimitradis, G. B. Pehling, B. A. Baker, M. W. Haymond, P. E. Cryer, and J. E. Gerich. Abnormal glucose counterregulation after subcutaneous insulin in insulin-dependent diabetes mellitus. NEJM 310:1706–1711 (1984).

    Google Scholar 

  25. T. W. Van Haeften, B. B. Bolli, G. D. Dimitriadis, I. S. Gotesman, D. L. Horwitz, and J. E. Gerich. Effect of insulin antibodies and their kinetic characteristics on plasma free insulin dynamics in patients with diabetes mellitus. Metabolism 35:649–656 (1986).

    Google Scholar 

  26. R. S. Gray, P. Cowan, U. Mario, R. A. Elton, B. F. Clarke, and L. J. P. Duncan. Influence of insulin antibodies on pharmacokinetics and bioavailability of recombinant human and highly purified beef insulins in insulin dependent diabetics. Brit. Med. J. 290:1687–1691 (1985).

    Google Scholar 

  27. K. Bendtzen, M. B. Hansen, C. Ross, and M. Svenson. High avidity autoantibodies to cytokines. Immunol. Today 19:209–211 (1998).

    Google Scholar 

  28. L. P. Courtney, J. L. Phelps, and L. M. Karavodin. An anti-IL-2 antibody increases serum half-life and improves anti-tumor efficacy of human recombinant interleukin-2. Immunopharmacol. 28:223–232 (1994).

    Google Scholar 

  29. J. Sato, N. Hamaguchi, K. Doken, S. Iwasa, Y. Ogawa, and H. Toguchi. Pharmacokinetic alteration in rats of recombinant interleukin-2 (rIL-2) by immunocomplexing with a monoclonal antibody against rIL-2. Biol. Pharm. Bull. 17:535–538 (1994).

    Google Scholar 

  30. A. T. Jones and H. J. Ziltener. Enhancement of the biologic effects of interleukin-3 in vivo by anti-interleukin-3 antibodies. Blood 82:1133–1141 (1993).

    Google Scholar 

  31. F. D. Finkelman, K. B. Madden, S. C. Morris, J. M. Holmes, N. Boiani, I. M. Katona, and C. R. Maleszewski. Anti-cytokine antibodies as carrier proteins. J. Immunol. 151:1235–1244 (1993).

    Google Scholar 

  32. E. Martens, C. Dillen, W. Put, H. Heremans, J. V. Damme, and A. Billiau. Increased circulating interleukin-6 (IL-6) activity in endotoxin-challenged mice pretreated with anti-IL-6 antibody is due to IL-6 accumulated in antigen-antibody complexes. Eur. J. Immunol. 23:2026–2029 (1993).

    Google Scholar 

  33. H. Suzuki, H. Takemura, K. Yoshizaki, Y. Koishihara, Y. Ohsugi, A. Okano, Y. Akiyama, T. Tojo, T. Kishimoto, and H. Kashiwagi. IL-6-anti-IL-6 autoantibody complexes with IL-6 activity in sera from some patients with systemic sclerosis. J. Immunol. 152:935–942 (1994).

    Google Scholar 

  34. W. C. Greene, L. S. Park, and T. Kishimoto. In I. M. Roitt and P. J. Delves (eds.) Encyclopedia of Immunology, Academic Press, New York, pp. 906–920, 1992.

    Google Scholar 

  35. F. A. Montero-Julian, B. Klein, E. Gautherot, and H. Brailly. Pharmacokinetic study of anti-interleukin-6 (IL-6) therapy with monoclonal antibodies: enhancement of IL-6 clearance by cocktails of anti-IL-6 antibodies. Blood 85:917–924 (1995).

    Google Scholar 

  36. K. M. Shokat and P. G. Schultz. Redirecting the immune response: ligand-mediated immunogenicity. J. Am. Chem. Soc. 113:1861–1862 (1991).

    Google Scholar 

  37. A. R. Lussow, L. Gao, M. Block, R. Buelow, P. Pouletty. Targeting of antihapten antibodies to activated T cells via an IL-2-hapten conjugate prolongs cardiac graft survival. Transplantation 62:1703–1708 (1996).

    Google Scholar 

  38. M. J. Cho and R. L. Juliano. Macromolecular versus small-molecule therapeutics: drug discovery, development and clinical considerations. Trends in Biotech. 14:153–158 (1996).

    Google Scholar 

  39. M. F. Bachmann, U. Kalinke, A. Althage, G. Freer, C. Burkhart, H. P. Roost, M. Aguet, H. Hengartner, and R. M. Zinkernagel. The role of antibody concentration and avidity in antiviral binding. Science 276:2024–2027 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehlaender, B.N., Cho, M.J. Antibodies as Carrier Proteins. Pharm Res 15, 1652–1656 (1998). https://doi.org/10.1023/A:1011936007457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011936007457

Navigation