Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new Drosophila APC homologue associated with adhesive zones of epithelial cells

Abstract

Adenomatous polyposis coli protein (APC) is an important tumour suppressor in the human colon epithelium. In a complex with glycogen synthase kinase-3 (GSK-3), APC binds to and destabilizes cytoplasmic (‘free’) β-catenin. Here, using a yeast two-hybrid screen for proteins that bind to the Drosophila β-catenin homologue, Armadillo, we identify a new Drosophila APC homologue, E-APC. E-APC also binds to Shaggy, the Drosophila GSK-3 homologue. Interference with E-APC function produces embryonic phenotypes like those of shaggy mutants. Interestingly, E-APC is concentrated in apicolateral adhesive zones of epithelial cells, along with Armadillo and E-cadherin, which are both integral components of the adherens junctions in these zones. Various mutant conditions that cause dissociation of E-APC from these zones also obliterate the segmental modulation of free Armadillo levels that is normally induced by Wingless signalling. We propose that the Armadillo-destabilizing protein complex, consisting of E-APC, Shaggy, and a third protein, Axin, is anchored in adhesive zones, and that Wingless signalling may inhibit the activity of this complex by causing dissociation of E-APC from these zones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A new APC homologue and its binding to Armadillo.
Figure 2: Apical localization of E-APC.
Figure 3: Requirement of Armadillo for membrane association of E-APC during cellularization.
Figure 4: Zonula adherens mutants cause dissociation of E-APC from adhesive zones.
Figure 5: Armadillo striping is obliterated in zonula adherens mutants.
Figure 6: sgg mutants show delocalization of E-APC from adhesive zones.
Figure 7: sgg-like phenotypes caused by dsRNA interference with E-APC.

Similar content being viewed by others

References

  1. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  2. Polakis, P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim. Biophys. Acta 1332, F127–F147 (1997).

    CAS  PubMed  Google Scholar 

  3. Perrimon, N. The genetic basis for patterned baldness in Drosophila. Cell 76, 781–784 (1996).

    Article  Google Scholar 

  4. Miller, J. R. & Moon, R. T. Signal transduction through β-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539 (1996).

    Article  CAS  Google Scholar 

  5. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumour-suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046–3050 (1995).

    Article  CAS  Google Scholar 

  6. Nusse, R. A versatile transcriptional effector of Wingless signaling. Cell 89, 321–323 (1997).

    Article  CAS  Google Scholar 

  7. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC–/– colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  8. Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  9. He, T.-C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  10. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  11. Vleminckx, K. et al. Adenomatous polyposis tumor suppressor protein has signaling activity in Xenopus embryos resulting in the induction of an ectopic dorsoanterior axis. J. Cell Biol. 136, 411–420 (1997).

    Article  CAS  Google Scholar 

  12. Rocheleau, C. E. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).

    Article  CAS  Google Scholar 

  13. Hayashi, S. et al. A Drosophila homolog of the tumor suppressor gene adenomatous polyposis coli down-regulates β-catenin but its zygotic expression is not essential for the regulation of Armadillo. Proc. Natl Acad. Sci. USA 94, 242–247 (1997).

    Article  CAS  Google Scholar 

  14. Ahmed, Y., Hayashi, S., Levine, A. & Wieschaus, E. Regulation of Armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell 93, 1171–1182 (1998).

    Article  CAS  Google Scholar 

  15. Rubinfeld, B. et al. Binding of GSK3-β to the APC-β-catenin complex and regulation of complex assembly. Science 272, 1023–1025 (1996).

    Article  CAS  Google Scholar 

  16. Ben-Ze’ev, A. . & Geiger, B. Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer. Curr. Opin. Cell Biol. 10, 629–639 (1998).

    Article  Google Scholar 

  17. Yu, X. & Bienz, M. Ubiquitous expression of a Drosophila Adenomatous polyposis coli homolog and its localisation in cortical actin caps. Mech. Dev. (in the press).

  18. Tepass, U. Epithelial differentiation in Drosophila. Bioessays 19, 673–682 (1997).

    Article  CAS  Google Scholar 

  19. Riese, J. et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88, 777–787 (1997).

    Article  CAS  Google Scholar 

  20. Huber, A. H., Nelson, W. J. & Weis, W. I. The three-dimensional structure of the Armadillo repeat region of β-catenin. Cell 90, 871–872 (1997).

    Article  CAS  Google Scholar 

  21. Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC and GSK3β. Science 280, 596–599 (1998).

    Article  CAS  Google Scholar 

  22. Foe, V. E., Odell, G. M. & Edgar, B. A. in The Development of Drosophila (eds Bate, M. & Martinez-Arias, A.) 149–300 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1993).

    Google Scholar 

  23. Tepass, U. Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev. Biol. 177, 217–225 (1996).

    Article  CAS  Google Scholar 

  24. Peifer, M., Orsulic, S., Sweeton, D. & Wieschaus, E. A role for the Drosophila segment polarity gene armadillo in cell adhesion and cytoskeletal integrity during oogenesis. Development 118, 681–691 (1993).

    Google Scholar 

  25. Müller, H. A . & Wieschaus, E. armadillo, bazooka and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarised blastoderm epithelium in Drosophila. J. Cell. Biol. 134, 149–163 (1996).

    Article  Google Scholar 

  26. Cox, R. T., Kirkpatrick, C. & Peifer, M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J. Cell Biol. 134, 133–148 (1996).

    Article  CAS  Google Scholar 

  27. Tepass, U. et al. shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neuroectoderm and other morphogenetically active epithelia. Genes Dev. 10, 672–685 (1996).

    Article  CAS  Google Scholar 

  28. Peifer, M., Sweeton, D., Casey, M. & Wieschaus, E. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120, 369–380 (1994).

    CAS  PubMed  Google Scholar 

  29. Uemura, T., Oda, H., Kraut, R., Hayashi, S. & Takeichi, M. Processes of dynamic epithelial cell rearrangement are the major targets of cadE/shotgun mutations in the Drosophila embryo. Genes Dev. 10, 659–671 (1996).

    Article  CAS  Google Scholar 

  30. Knust, E. Control of epithelial polarity in Drosophila. Trends Genet. 10, 275–280 (1994).

    Article  CAS  Google Scholar 

  31. Grawe, F., Wodarz, A., Lee, B., Knust, E. & Skaer, H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122, 951–959 (1996).

    CAS  PubMed  Google Scholar 

  32. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference demonstrate that frizzled and frizzled 2 act in the Wingless pathway. Cell 95, 1017–1026 (1998).

    Article  CAS  Google Scholar 

  33. Thüringer, F., Cohen, S. M. & Bienz, M. Dissection of an indirect autoregulatory response of a homeotic Drosophila gene. EMBO J. 12, 2419–2430 (1993).

    Article  Google Scholar 

  34. Yu, X., Hoppler, S., Eresh, S. & Bienz, M. decapentaplegic, a target gene of the wingless signalling pathway in the Drosophila midgut. Development 122, 849–858 (1996).

    CAS  PubMed  Google Scholar 

  35. Waltzer, L. & Bienz, M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395, 521–525 (1998).

    Article  CAS  Google Scholar 

  36. Pai, L. M., Orsulic, S., Bejsovec, A. & Peifer, M. Negative regulation of Armadillo, a Wingless effector in Drosophila. Development 124, 2255–2266 (1997).

    CAS  PubMed  Google Scholar 

  37. Miyashiro, I. et al. Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 11, 89–96 (1995).

    CAS  PubMed  Google Scholar 

  38. Näthke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134, 165–179 (1996).

    Article  Google Scholar 

  39. Neufeld, K. L. & White, R. L. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc. Natl Acad. Sci. USA 94, 3034–3039 (1997).

    Article  CAS  Google Scholar 

  40. Hülsken, J., Behrens, J. & Birchmeier, W. Tumor-suppressor gene products in cell contacts: the Cadherin-APC-armadillo connection. Curr. Opin. Cell Biol. 6, 711–716 (1994).

    Article  Google Scholar 

  41. Fagotto, F., Guger, K. & Gumbiner, B. M. Binding to cadherin antagonizes the signaling activity of β-catenin during axis formation in Xenopus. J. Cell Biol. 132, 1105–1114 (1996).

    Article  CAS  Google Scholar 

  42. Sanson, B., White, P. & Vincent, J.-P. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383, 627–630 (1996).

    Article  Google Scholar 

  43. Orsulic, S. & Peifer, M. An in vivo structure-function study of Armadillo, the β-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for Wingless signalling. J. Cell Biol. 134, 1283–1300 (1996).

    Article  CAS  Google Scholar 

  44. Hamada, F. et al. Negative regulation of Wingless signaling by D-Axin, a Drosophila homolog of Axin. Science 283, 1739–1742 (1999).

    Article  CAS  Google Scholar 

  45. Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, E. & Polakis, P. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  Google Scholar 

  46. Fehon, R. G., Johansen, K., Rebay, I. & Artavanis-Tsakonas, S. Complex cellular and subcellular regulation of Notch expression during embryonic and imaginal development of Drosophila: implications for Notch function. J. Cell Biol. 113, 657–659 (1991).

    Article  CAS  Google Scholar 

  47. Simske, J. S., Kaech, S. M., Harp, S. A. & Kim, S. K. LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85, 195–204 (1996).

    Article  CAS  Google Scholar 

  48. Paroush, Z. et al. Groucho is required for Drosophila neurogenesis, segmentation and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79, 805–815 (1994).

    Article  CAS  Google Scholar 

  49. Brown, N. & Kafatos, F. Functional cDNA libraries from Drosophila embryos. J. Mol. Biol. 203, 425–437 (1988).

    Article  CAS  Google Scholar 

  50. Bourouis, M. et al. An early embryonic product of the gene shaggy encodes a serine/threonine protein kinase related to the CDC28/cdc2+ subfamily. EMBO J. 9, 2877–2884 (1990).

    Article  CAS  Google Scholar 

  51. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  52. Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Tacheichi, M. A Drosophila homolog of cadherin associated with Armadillo and essential for embryonic cell-cell adhesion. Dev. Biol. 165, 716–726 (1994).

    Article  CAS  Google Scholar 

  53. Nakagawa, H. et al. Identification of a brain-specific APC homologue, APCL, and its interaction with β-catenin. Cancer Res. 58, 5176–5181 (1998).

    CAS  PubMed  Google Scholar 

  54. van Es, J. H. et al. Identification of APC2, a homologue of the adenomatous polyposis tumour suppressor. Curr. Biol. 9, 105–108 (1999).

    Article  CAS  Google Scholar 

  55. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382 225–230,1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bourouis for the sgg cDNA; A. González-Reyes, H. Skaer, J.-P. Vincent, A. Müller and the Developmental Studies Hybridoma Bank for antibodies and fly strains; B. Amos for help with the confocal microscopy; and M. Freeman and H. Pelham for comments on the manuscript. X.Y. was supported by a studentship from Trinity College, Cambridge.

Correspondence and requests for materials should be addressed to M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariann Bienz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Waltzer, L. & Bienz, M. A new Drosophila APC homologue associated with adhesive zones of epithelial cells. Nat Cell Biol 1, 144–151 (1999). https://doi.org/10.1038/11064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing