Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis

Abstract

Idiopathic inflammatory bowel disease is a chronic relapsing condition. The role of stress in causing relapses of inflammatory bowel disease remains controversial. We now show that colitis induced in mice by dinitrobenzenesulfonic acid (DNBS) resolves by 6 weeks, but can subsequently be reactivated by stress plus a sub-threshold dose of DNBS, but not by DNBS alone. Stress reduced colonic mucin and increased colon permeability. Susceptibility to reactivation by stress required CD4+ lymphocytes and could be adoptively transferred. We conclude that stress reactivates experimental colitis by facilitating entry of luminal contents that activate previously sensitized CD4 cells in the colon.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acute colitis induced by DNBS in Balb/c mice.
Figure 2: The effect of stress on the colon.
Figure 3: The effect of stress on the colon of SCID mice that received T cells from mice with colitis.
Figure 4: The effect of stress on colonic permeability.

Similar content being viewed by others

References

  1. Podolsky, D.K. Inflammatory bowel disease. N. Engl. J. Med. 325, 928–935 (1991).

    Article  CAS  Google Scholar 

  2. Elson, C.O., Sartor, R.B., Tennyson, G.S. & Riddell, R.H. Experimental models of inflammatory bowel disease. Gastroenterology 109, 1344–1367 (1995).

    Article  CAS  Google Scholar 

  3. Reuter, B.K., Asfaha, S., Buret, A., Sharkey, K.A. & Wallace, J.L. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J. Clin. Invest. 98, 2076–2085 (1996).

    Article  CAS  Google Scholar 

  4. Garrett, V.D., Brantley, P.J., Jones, G.N. & McKnight, G.T. The relation between daily stress and Crohn's disease. J. Behav. Med. 14, 87–96 (1991).

    Article  CAS  Google Scholar 

  5. Duffy, L.C. et al. Relevance of major stress events as an indicator of disease activity prevalence in inflammatory bowel disease. Behav. Med. 17, 101–110 (1991).

    Article  CAS  Google Scholar 

  6. Fava, G.A. & Pavan, L. Large bowel disorders. I. Illness configuration and life events. Psychother. Psychosom. 27, 93–99 (1976).

    Article  Google Scholar 

  7. Duffy, L.C. et al. Lag time between stress events and risk of recurrent episodes of inflammatory bowel disease. Epidemiology 2,141–145 (1991).

    Article  CAS  Google Scholar 

  8. Milne, B., Joachim, G. & Niedhardt. J. A stress management programme for inflammatory bowel disease patients. J. Adv. Nurs. 11, 561–567 (1986).

    Article  CAS  Google Scholar 

  9. Greene, B.R., Blanchard, E.B. & Wan, C.K. . Long-term monitoring of psychosocial stress and symptomatology in inflammatory bowel disease. Behav. Res. Ther. 32, 217–226 (1994).

    Article  CAS  Google Scholar 

  10. North, C.S., Alpers, D.H., Helzer, J.E., Spitznagel & E.L., Clouse, R.E. Do life events or depression exacerbate inflammatory bowel disease. Ann. Intern. Med. 114, 381–386 (1991).

    Article  CAS  Google Scholar 

  11. North C.S., Clouse, R.E., Spitznagel, E.L. & Alpers, D.H. The relationship of ulcerative colitis to psychiatric factors: a review of findings and methods. Am. J. Psychiatry 147, 974–981 (1990).

    Article  CAS  Google Scholar 

  12. Schwartz, S.P.B.E.B. Inflammatory bowel disease: A review of the psychological assessment and treatment literature. Ann. Behav. Med. 2, 119–124 (1990).

    CAS  Google Scholar 

  13. Drossman, D.A., Kirsner, J.B. & Shorter, R.G. in Inflammatory Bowel Disease 4th ed. (ed. Kirsner, J.B.) 492–516 (Williams & Wilkins, Baltimore, 1995).

    Google Scholar 

  14. Sternberg, E.M. et al. A central nervous system defect in biosynthesis of corticotropin- releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc. Natl. Acad. Sci. 86, 4771–4775 (1989).

    Article  CAS  Google Scholar 

  15. Salem, S.N. & Shubair, K.S. Non-specific ulcerative colitis in Bedouin Arabs. Lancet 1, 473–474 (1967).

    Article  CAS  Google Scholar 

  16. Stout, C. & Snyder, R. Ulcerative colitis-like lesions in Siamong gibbons. Gastroenterology 57, 256–261 (1969).

    CAS  PubMed  Google Scholar 

  17. Engel, G.L. Psychological factors in ulcerative colitis in man and gibbon. Gastroenterology 57, 362–366 (1969).

    CAS  PubMed  Google Scholar 

  18. Lopez, Y., Fioramonti, J. & Bueno, L. Central and peripheral control of postprandial pyloric motility by endogenous opiates and cholecystokinin in dogs. Gastroenterology 101, 1249–1255 (1991).

    Article  CAS  Google Scholar 

  19. Collins, S.M. et al. Previous inflammation alters the response of the rat colon to stress. Gastroenterology 111, 1509–1515 (1996).

    Article  CAS  Google Scholar 

  20. Monnikes, H., Schmidt, B.G., Raybould, H.E. & Tache, Y. CRF in the paraventricular nucleus mediates gastric and colonic motor response to restraint stress. Am. J. Physiol. 262, G137–G143 (1992).

    CAS  PubMed  Google Scholar 

  21. Million, M., Tache, Y. & Anton, P. Susceptibility of Lewis and Fischer rats to stress-induced worsening of TNB-colitis: Protective role of brain CRF. Am. J. Physiol. 276, G1027–G1036 (1999).

    CAS  PubMed  Google Scholar 

  22. Sternberg, E.M., Chrousos, G.P., Wilder, R.L. & Gold, P.W. The stress response and the regulation of inflammatory disease. Ann. Intern. Med. 117, 854–866 (1992).

    Article  CAS  Google Scholar 

  23. Sternberg, E.M. & Licinio, J. Overview of neuroimmune stress interactions. Implications for susceptibility to inflammatory disease. Ann. NY Acad. Sci. 771, 364–371 (1995).

    Article  CAS  Google Scholar 

  24. Gue, M. et al. Stress-induced enhancement of colitis in rats: CRF and arginine vasopressin are not involved. Am. J. Physiol. 272, G84–G91 (1997).

    CAS  PubMed  Google Scholar 

  25. Neurath, M.F. et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J. Exp. Med. 183, 2605–2616 (1996).

    Article  CAS  Google Scholar 

  26. Palmen, M.J., Wijburg, O.L., Kunst, I.H., Kroes, H. & Van Rees, E.P. CD4+ T cells from 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rodents migrate to the recipient's colon upon transfer; down-regulation by CD8+ T cells. Clin. Exp. Immunol. 112, 216–225 (1998).

    Article  CAS  Google Scholar 

  27. Brandwein, S.L. et al. Spontaneously colitic C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial flora. J. Immunol. 159, 44–52 (1997).

    CAS  PubMed  Google Scholar 

  28. Saunders, P.R., Hanssen, N.P. & Perdue, M.H. Cholinergic nerves mediate stress-induced intestinal transport abnormalities in Wistar-Kyoto rats. Am. J. Physiol. 273, G486–G490 (1997).

    CAS  PubMed  Google Scholar 

  29. Castagliuolo, I. et al. Acute stress causes mucin release from rat colon: role of corticotropin releasing factor and mast cells. Am. J. Physiol. 271, G884–G892 (1996).

    CAS  PubMed  Google Scholar 

  30. Rubio, C.A. & Huang, C.B. Quantification of the sulphomucin-producing cell population of the colonic mucosa during protracted stress in rats. In Vivo 6, 81–84 (1992).

    CAS  PubMed  Google Scholar 

  31. Sturiale, S. et al. Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P. Proc. Natl. Acad. Sci. USA (in the press).

  32. Kemler, M.A., Barendse, G.A. & Van Kleef, M. Relapsing ulcerative colitis associated with spinal cord stimulation. Gastroenterology 117, 215–217 (1999).

    Article  CAS  Google Scholar 

  33. Rahemtulla, A. et al. Normal development and function of CD8+ cells markedly decreased helper T cell activity in mice lacking CD4. Nature 353, 180–184 (1991).

    Article  CAS  Google Scholar 

  34. Fung-Leung, W.P. et al. CD8 is needed for the development and function of cytotoxic T cells but not helper T cells. Cell 65, 443–448 (1991).

    Article  CAS  Google Scholar 

  35. Wallace, J.L., Le, T., Carter, L., Appleyard, C.B. & Beck, P.L. Hapten-induced chronic colitis in the rat: alternatives to trinitrobenzene sulfonic acid. J. Pharmacol. Toxicol. Methods 33, 237–239 (1995).

    Article  CAS  Google Scholar 

  36. Zhou, D., Kusnecov, A.W., Shurin, M.R., DePaoli, M. & Rabin, B.S. Exposure to physical and psychological stressors elevates plasma interleukin-6: relationship to the activation of hypothalamic- pituitary-adrenal axis. Endocrinology 133, 2523–2530 (1993).

    Article  CAS  Google Scholar 

  37. Clark, D.A., Banwatt, D. & Chaouat, G. Stress-triggered abortion in mice prevented by alloimmunization. Am. J. Reprod. Immunol. 29, 141–147 (1993).

    Article  CAS  Google Scholar 

  38. Wilkinson, C.W., Shinsako, J. & Dallman, M.F. Return of pituitary-adrenal function after adrenal enucleation or transplantation: diurnal rhythms and response to ether. Endocrinology 109, 162–169 (1981).

    Article  CAS  Google Scholar 

  39. Wallace, J.L. & Keenan, C.M. An orally active inhibitor of leukotriene synthesis accelerates healing in a rat model of colitis. Am. J. Physiol. 258, G527–G534 (1990).

    CAS  PubMed  Google Scholar 

  40. Boughton-Smith, N.K., Wallace, J.L. & Whittle, B.J.R. Relationship between arachidonic acid metabolism, myeloperoxidase activity and leukocyte infiltration in a rat model of inflammatory bowel disease. Agents Actions 25, 115–123 (1988).

    Article  CAS  Google Scholar 

  41. Vallance, B.A., Hewlett, B.R., Snider, D.P. & Collins, S.M. T cell mediated exocrine pancreatic damage in major histocompatibility complex class II-deficient mice. Gastroenterology 115, 978–987 (1998).

    Article  CAS  Google Scholar 

  42. Gong, H., Turner, B., Bhakar, K. & LaMont, J.T. Lipid binding to gastric mucin: protective effect against oxygen radicals. Am. J. Physiol. 259, G681–G686 (1990).

    CAS  PubMed  Google Scholar 

  43. Pothoulakis, C. et al. Ketotifen inhibits Clostridium difficile toxin induced enteritis in rat ileum. Gastroenterology 105, 701–707 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants to SMC from the Medical Research Council of Canada, and from a Research Initiative Award from the Canadian Association of Gastroenterology and Astra Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.M. Collins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, B., Vallance, B., Blennerhassett, P. et al. The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nat Med 5, 1178–1182 (1999). https://doi.org/10.1038/13503

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing