Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Development of peripheral lymphoid organs and natural killer cells depends on the helix–loop–helix inhibitor Id2

Abstract

Transcription factors with a basic helix–loop–helix (HLH) motif have been shown to be crucial for various cell differentiation processes during development of multicellular organisms1. Id proteins inhibit the functions of these transcription factors in a dominant-negative manner by suppressing their heterodimerization partners through the HLH domains2,3,4. Members of the Id family also promote cell proliferation4,5, implying a role in the control of cell differentiation. Here we show that Id2 is indispensable for normal development of mice. Id2−/− mice lack lymph nodes and Peyer's patches. However, their splenic architecture is normal, exhibiting T-cell and B-cell compartments and distinct germinal centres. The cell population that produces lymphotoxins, essential factors for the development of secondary lymphoid organs6,7,8,9,10,11, is barely detectable in the Id2−/− intestine. Furthermore, the null mutants show a greatly reduced population of natural killer (NK) cells, which is due to an intrinsic defect in NK-cell precursors. Our results indicate that Id2 has an essential role in the generation of peripheral lymphoid organs and NK cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Id2-null-mutant mice by targeted inactivation.
Figure 2: Retarded growth of Id2−/− mice.
Figure 3: Lymph nodes and Peyer's patches are absent in Id2−/− mice.
Figure 4: Normal splenic architecture of the Id2−/− mice.
Figure 5: Impaired NK-cell production in the Id2−/− mice.
Figure 6: RT-PCR analysis on Id2 expression in CD4+CD3IL-7Rα+ and NK cells.

Similar content being viewed by others

References

  1. Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Benezra, R. et al. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Sun, X. H., Copeland, N. G., Jenkins, N. A. & Baltimore, D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol. Cell Biol. 11, 5603–5611 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Norton, J. D., Deed, R. W., Craggs, G. & Sablitzky, F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8, 58–65 (1998).

    CAS  PubMed  Google Scholar 

  5. Iavarone, A. et al. The helix-loop-helix protein Id2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev 8, 1270–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. De Togni, P. et al. Abnormal development of perpheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Rennert, P. et al. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184, 1999–2006 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Koni, P. A. et al. Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity 6, 491–500 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Fütterer, A. et al. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  PubMed  Google Scholar 

  10. Rennert, P. D. et al. Lymph node genesis is induced by signaling through the lymphotoxin β receptor. Immunity 9, 71–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Chaplin, D. & Fu, Y. Cytokine regulation of secondary lymphoid organ development. Curr. Opin. Immunol. 10, 289–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Adachi, S., Yoshida, H., Kataoka, H. & Nishikawa, S. Three distinctive steps in Peyer's patch formation of murine embryo. Int. Immunol. 9, 507–514 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Picarella, D. et al. Transgenic tumor necrosis factor (TNF)-α production in pancreatic islets leads to insulitis, not diabetes. Distinct patterns of inflammation in TNF-α and TNF-β transgenic mice. J. Immunol. 150, 4136–4150 (1993).

    CAS  PubMed  Google Scholar 

  14. Mebius, R., Rennert, P. & Weissman, I. Developing lymph nodes collect CD4+CD3LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida, H. et al. Interleukin-7 receptor α+CD3 cells in embryonic intestine induces organizing center of Peyer's patch. Int. Immunol.(in press).

  16. Miyawaki, S. et al. Anew mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur. J. Immunol. 24, 429–434 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Rose, M. L. et al. Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature 284, 364–366 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kraal, G. & Janes, M. Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immonology 58, 665–669 (1986).

    CAS  Google Scholar 

  19. Liu, Y. J., Grouard, G., de Bouteiller, O. & Banchereau, J. Follicular dendritic cells and germinal centers. Int. Rev. Cytol. 166, 139–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Kraal, G. et al. Expression of the mucosal vascular addresin, MAdCAM-1, on sinus-lining cells in the spleen. Am. J. Pathol. 147, 763–771 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Fu, Y. X. et al. Independent signals regulate development of primary and secondary follicle structure in spleen and mesenteric lymph node. Proc. Natn. Acad. Sci. USA 94, 5739–5743 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Smith, K. G. C. et al. Bcl-2 increases memory B cell recruitment but does not perturb selection in germinal centers. Immunity 1, 803–813 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez, M. et al. The sequential role of lymphotoxin and B cells in the development of splenic follicles. J. Exp. Med. 187, 997–1007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ogasawara, K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Carson, W. E. et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 180, 1395–1403 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Heemskerk, M. H. M. et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix-loop-helix factor Id3. J. exp. Med. 186, 1597–1602 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodewald, H. et al. A population of early fetal thymocytes expressing Fc gamma RII/III contains precursors of T lymphocytes and natural killer cells. Cell 69, 139–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Yagi, T. et al. A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal. Biochem. 214, 77–86 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka, T. et al. Selective long-term elimination of natural killer cells in vivo by an anti-interleukin 2 receptor β chain monoclonal antibody in mice. J. Exp[. Med. 178, 1103–1107 (1993).

    Article  CAS  Google Scholar 

  30. Sudo, T. et al. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl Acad. Sci. USA 90, 9125–9129 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Yoshida, N. Mitato, M. Matsumoto, T. Yamada, S. Takeda, K.Ogasawara and R. Benezra for valuable discussions and suggestions; T. Yagi, T. Neuman, S. Itohara, H. Yoshida, T. Takemori, M. Miyasaka, T. Nishimura, E. Nakamura, N. Minato, H. Kawamoto and Y.Katsura for providing materials; R. Liebal for supporting the mouse work; J. Krull, Y. Tsuji, S.-H. Park, M. Tanji, T. Kikuchi and M. Hirashima for assistance; and R. Altschäffel for photographic work. This work was supported by the Max-Planck Soceity, the Ministry of Education, Science and Culture of Japan, and the Yamanouchi Foundation. Y.Y. was supported by the Alexander von Humboldt Foundation, the Jeantet-Foundation and the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Yokota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokota, Y., Mansouri, A., Mori, S. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix–loop–helix inhibitor Id2. Nature 397, 702–706 (1999). https://doi.org/10.1038/17812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17812

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing