Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit

Abstract

We have calculated at 5.0 Å resolution an electron-density map of the large 50S ribosomal subunit from the bacterium Haloarcula marismortui by using phases derived from four heavy-atom derivatives, intercrystal density averaging and density-modification procedures. More than 300 base pairs of A-form RNA duplex have been fitted into this map, as have regions of non-A-form duplex, single-stranded segments and tetraloops. The long rods of RNA crisscrossing the subunit arise from the stacking of short, separate double helices, not all of which are A-form, and in many places proteins crosslink two or more of these rods. The polypeptide exit channel was marked by tungsten cluster compounds bound in one heavy-atom-derivatized crystal. We have determined the structure of the translation-factor-binding centre by fitting the crystal structures of the ribosomal proteins L6, L11 and L14, the sarcin–ricin loop RNA, and the RNA sequence that binds L11 into the electron density. We can position either elongation factor G or elongation factor Tu complexed with an aminoacylated transfer RNA and GTP onto the factor-binding centre in a manner that is consistent with results from biochemical and electron microscopy studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 5Å-resolution electron-density map of the 50S ribosomal subunit.
Figure 2: Visualization of the tunnel in which tungsten clusters are located.
Figure 3: A variety of interactions between RNA duplexes.
Figure 4: The fitting of previously solved protein and nucleic acid structures to the 5Å-resolution electron density map.
Figure 5: The proteins (in white backbone ribbons) and RNAs (in coloured ribbon) of the factor-binding site that have been fitted to the density.
Figure 6: Packing diagrams of the 50S subunits in the orthorhombic, monoclinic and twinned monoclinic unit cells.

Similar content being viewed by others

References

  1. Monro, R. E. Catalysis of peptide bond formation by 50S ribosomal subunits from Escherichia coli. J. Mol. Biol. 26, 147–151 (1967).

    Article  CAS  Google Scholar 

  2. Wittmann-Liebold, B., in Structure, Function, and Genetics of Ribosomes (eds Hardesty, B. & Kramer, G.) 326–361 (Springer, New York, 1986).

    Book  Google Scholar 

  3. Frank, J. et al. Amodel for protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376, 441–444 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Stark, H. et al. Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88, 19–28 (1997).

    Article  CAS  Google Scholar 

  5. Milligan, R. A. & Unwin, P. N. T. Location of exit channel for nascent protein in 80S ribosome. Nature 319, 693–695 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome–Sec61 complex. Science 278, 2123–2128 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Liljas, A. in The Ribosome. Structure, Function & Evolution (eds Hill, W. E. et al.) 309–317 (Am. Soc. Microbiol., Washington DC, 1990).

    Google Scholar 

  8. Capel, M. S. et al. Acomplete mapping of the proteins in the small ribosomal subunit of E. coli. Science 238, 1403–1406 (1987).

    Article  ADS  CAS  Google Scholar 

  9. May, R. P., Nowotny, V., Nowotny, P., Voss, H. & Nierhaus, K. H. Inter-protein distances within the large subunit from Escherichia coli ribosomes. EMBO J. 11, 373–378 (1992).

    Article  CAS  Google Scholar 

  10. Oakes, M. Henderson, E., Scheinman, A., Clark, M. & Lake, J. A. in Structure, Function and Genetics of Ribosomes (eds Hardesty, B. & Kramer, G.) 47–67 (Springer, New York, 1986).

    Book  Google Scholar 

  11. Stoeffler, G. & Stoeffler-Meilicke, M. in Structure, Function, and Genetics of Ribosomes (eds Hardesty, B. & Kramer, G.) 28–46 (Springer, New York, 1986).

    Book  Google Scholar 

  12. Ramakrishnan, A. & White, S. W. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem. Sci. 23, 208–212 (1998).

    Article  CAS  Google Scholar 

  13. Szewczak, A. A. & Moore, P. B. The sarcin/ricin loop, a modular RNA. J. Mol. Biol. 247, 81–98 (1995).

    Article  CAS  Google Scholar 

  14. Correll, C. C. et al. Crystal structure of the ribosomal RNA loop essential for binding both elongation factors. Proc. Natl Acad. Sci. USA 95, 13436–13441 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Correll, C. C., Freeborn, B., Moore, P. B. & Steitz, T. A. Metals, motifs and recognition in the crystal structure of a 5S rRNA domain. Cell 91, 705–712 (1997).

    Article  CAS  Google Scholar 

  16. Dallas, A. & Moore, P. B. The solution structure of the loop E/loop D regio of E. coli 5S rRNA. Structure 5, 1639–1653 (1997).

    Article  CAS  Google Scholar 

  17. Wimberly, B. T., Guymon, R., McCutcheon, J. P., White, S. W. & Ramakrishnan, V. R. Adetailed view of a ribosomal active site: the structure of the L11–RNA complex. Cell 97, 491–502 (1999).

    Article  CAS  Google Scholar 

  18. Conn, G. L., Draper, D. E., Lattman, E. E. & Gittis, A. G. Crystal structure of a conserved ribosomal protein RNA complex. Science 284, 1171–1174 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Agrawal, R. K., Penczek, P., Grassucci, R. A. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl Acad. Sci. USA 95, 6134–6138 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Stark, H. et al. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389, 403–406 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Ban, N. et al. A9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93, 1105–1115 (1998).

    Article  CAS  Google Scholar 

  22. Cowtan, K. D. An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  23. Jones, T. A. in CCP4 Study Weekend, Molecular Replacement (eds Dodson, E. J., Glover, S. & Wolf, W.) 91–105 (SSRC, Daresbury Laboratory, Warrington, Cheshire, UK, 1992).

    Google Scholar 

  24. Bernabeu, C. & Lake, J. A. Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: Immune mapping of the nascent chain. Proc. Natl Acad. Sci. USA 79, 3111–3115 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Kleywegt, G. J. & Jones, T. A. Template convolution to enhance or detect structural features in macromolecular electron-density maps. Acta. Crystallogr. D 53, 179–185 (1997).

    Article  CAS  Google Scholar 

  26. Cate, J. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Jucker, F. M., Heus, H. A., Yip, P. F., Moors, E. H. M. & Pardi, A. Anetwork of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 264, 968–980 (1996).

    Article  CAS  Google Scholar 

  28. Stern, S., Powers, T., Changchien, L.-I. & Noller, H. F. RNA–proteins interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science 244, 783–790 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Golden, B. L., Ramakrishnan, V. & White, S. W. Ribosomal protein L6. Structural evidence of gene duplication from a primitive RNA binding protein. EMBO J. 12, 4901–4908 (1993).

    Article  CAS  Google Scholar 

  30. Leffers, H., Kjems, J., Ostergaard, L., Larsen, N. & Garrett, R. A. Evolutionary relationships amongst archaebacteria: a comparative study of 23S ribosomal RNAs of a sulphur-dependent extreme thermophile, an extreme halophile, and a thermophilic mechanogen. J. Mol. Biol. 195, 43–61 (1987).

    Article  CAS  Google Scholar 

  31. Leffers, H., Egeberg, J., Andersen, A., Christensen, T. & Garrett, R. A. Domain VI of Escherichia coli 23S ribosomal RNA structure, assembly and function. J. Mol. Biol. 204, 507–522 (1988).

    Article  CAS  Google Scholar 

  32. Uchiumi, T., Sato, N., Wada, A. & Hachimori, A. Interaction of the sarcin/ricin domain of 23S ribosomal RNA with proteins L3 and L6. J. Biol. Chem. 274, 681–686 (1999).

    Article  CAS  Google Scholar 

  33. Urlaub, H., Kruft, V., Bischof, O., Muller, E. C. & Wittmann-Liebold, B. Protein–rRNA binding features and their structural and functional implications in ribosomes as determined by crosslinking studies. EMBO J. 14, 4578–4588 (1995).

    Article  CAS  Google Scholar 

  34. Davies, C., White, S. W. & Ramakrishnan, V. The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus. Structure 4, 55–66 (1996).

    Article  CAS  Google Scholar 

  35. Walleczek, J., Schuler, D., Stoeffler-Meilicke, M., Brimacombe, R. & Stoeffler, G. Amodel for the spatial arrangement of the proteins in the large subunit of the Escherichia coli ribosome. EMBO J. 7, 3571–3576 (1988).

    Article  CAS  Google Scholar 

  36. Nakagawa, A. et al. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome. EMBO J. 18, 1459–1467 (1999).

    Article  CAS  Google Scholar 

  37. Wilson, K. S. & Noller, H. H. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92, 131–139 (1998).

    Article  CAS  Google Scholar 

  38. Aevarsson, A. et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677 (1994).

    Article  CAS  Google Scholar 

  39. Czworkowski, J., Wang, J., Steitz, T. A. & Moore, P. B. The crystal structure of elongation factor G complexed with GDP at 2.7 Å resolution. EMBO J. 13, 3661–3668 (1994).

    Article  CAS  Google Scholar 

  40. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu and a GTP analog. Science 270, 1464–1472 (1995).

    Article  ADS  CAS  Google Scholar 

  41. Moazed, D., Robertson, J. M. & Noller, H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364 (1988).

    Article  ADS  CAS  Google Scholar 

  42. Traut, R. R. et al. in Structure, Function, and Genetics of Ribosomes (eds Hardesty, B. & Kramer, G.) 286–308 (Springer, New York, 1986).

    Book  Google Scholar 

  43. Skold, S. E. Chemical crosslinking of elongation factor G to both subunits of the 70S ribosome from E. coli. Eur. J. Biochem. 127, 225–229 (1982).

    Article  CAS  Google Scholar 

  44. Skold, S. E. Chemical crosslinking of elongation factor G to the 23S rRNA in 70S ribosomes from Escherichia coli. Nucleic Acids Res. 11, 4923–4932 (1983).

    Article  CAS  Google Scholar 

  45. Nevskaya, N. et al. Structure of archaeal ribosomal protein L1 provides new insights into the RNA binding for the L1 protein family. J. Mol. Biol.(in the press).

  46. von Bohlen, K. et al. Characterization and preliminary attempts for derivitization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 Å resolution. J. Mol. Biol. 222, 11–15 (1991).

    Article  CAS  Google Scholar 

  47. Otwinowski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, D.) 52–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  48. Brünger, A. T. et al. Crystallography and NMR system (CNS): a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  49. Yeates, T. O. Detecting and overcoming crystal twinning. Methods Enzymol. 276, 344–358 (1997).

    Article  CAS  Google Scholar 

  50. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structural determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–43 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Freeborn for biochemical support; R. Sweet for helping us with data collection at the National Synchrotron Light Source; and I.Tanaka, M. Garber and S. Al-Karadaghi for providing coordinates before publication. This investigation was supported by grants from NIH to T.A.S. and P.B.M. N.B. was a Damon Runyon-Walter Winchell Postdoctoral Fellow during part of this study, and P.N. is supported by the Danish Research Council. The coordinates of all identified RNA and protein structures have been deposited in the protein data bank with accession number IC04.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, N., Nissen, P., Hansen, J. et al. Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature 400, 841–847 (1999). https://doi.org/10.1038/23641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23641

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing