Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle

Abstract

A number of intracellular, membrane-bound compartments in both the endocytic and exocytic pathways of eukaryotic cells have an acidic internal pH1. In endocrine cells, the mature secretory vesicle has an acidic pH; secretory vesicles isolated from exocrine cells, however, appear to have a neutral pH2. Recently we have used a newly developed immunocytochemical technique3 to map low-pH compartments in insulin-secreting islet cells with the electron microscope and find that during the maturation of the secretory vesicle there is a progressive acidification of these vesicles that begins as soon as the trans Golgi condensing vacuoles form4. Now we have used this technique to examine two exocrine cells: the pancreatic acinar cell and the parotid serous cell. In both cell types, the trans Golgi condensing vacuoles are acidic and accumulate the low-pH probe to the same extent as condensing vacuoles of insulin-secreting islet cells. Unlike insulin-secreting cells, however, maturation of the granules is accompanied by a return of luminal pH to near neutrality. Therefore, although the pH of storage granules in exocrine and endocrine cells is different, the pH of the condensing vacuoles in both cells is acidic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mellman, I., Fuchs, R. & Helenius, A. A. Rev. Biochem. 55, 663–700 (1986).

    Article  CAS  Google Scholar 

  2. Arvan, P., Rudnick, G. & Castle, J. D. J. biol. Chem. 260, 14945–14952 (1985).

    CAS  PubMed  Google Scholar 

  3. Anderson, R. G. W., Falck, J. R., Goldstein, J. L. & Brown, M. S. Proc. natn. Acad. Sci. U.S.A. 81, 4838–4842 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Orci, L. et al. J. Cell Biol. 103, 2273–2281 (1986).

    Article  CAS  Google Scholar 

  5. Anderson, R. G. W. & Pathak, R. K. Cell 40, 635–643 (1985).

    Article  CAS  Google Scholar 

  6. Griffiths, G. & Simons, K. Science 234, 438–443 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Steiner, D. F., Docherty, K. & Carroll, R. J. cell. Biochem. 24, 121–130 (1984).

    Article  CAS  Google Scholar 

  8. Kelly, R. B. Science 230, 25–32 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Griffiths, G., Quinn, P. & Warren, G. J. Cell Biol. 96, 835–850 (1983).

    Article  CAS  Google Scholar 

  10. Moore, H-P., Gumbiner, B. & Kelly, R. B. Nature 302, 434 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Kawai, K., Ipp, E., Orci, L., Perrelet, A. & Unger, R. H. Science 218, 477–478 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Lombardi, T. et al. Nature 313, 694–696 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Caplan, M. J. et al. J. Cell. Biol. 103, 8a (1986).

    Google Scholar 

  14. Bruzzone, R., Halban, P. A., Gjinovci, A. & Trimble, E. R. Biochem. J. 226, 621–624 (1985).

    Article  CAS  Google Scholar 

  15. Roth, J., Bendayan, M. & Orci, L. J. Histochem. Cytochem. 26, 1074–1081 (1978).

    Article  CAS  Google Scholar 

  16. Coons, A. H., Leduc, E. H. & Connolly, J. M. J. exp. Med. 102, 49–63 (1955).

    Article  CAS  Google Scholar 

  17. Maxwell, M. H. J. Microsc. 112, 253–255 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orci, L., Ravazzola, M. & Anderson, R. The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle. Nature 326, 77–79 (1987). https://doi.org/10.1038/326077a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326077a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing