Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling

Abstract

Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphoma, is clinically heterogeneous: 40% of patients respond well to current therapy and have prolonged survival, whereas the remainder succumb to the disease. We proposed that this variability in natural history reflects unrecognized molecular heterogeneity in the tumours. Using DNA microarrays, we have conducted a systematic characterization of gene expression in B-cell malignancies. Here we show that there is diversity in gene expression among the tumours of DLBCL patients, apparently reflecting the variation in tumour proliferation rate, host response and differentiation state of the tumour. We identified two molecularly distinct forms of DLBCL which had gene expression patterns indicative of different stages of B-cell differentiation. One type expressed genes characteristic of germinal centre B cells (‘germinal centre B-like DLBCL’); the second type expressed genes normally induced during in vitro activation of peripheral blood B cells (‘activated B-like DLBCL’). Patients with germinal centre B-like DLBCL had a significantly better overall survival than those with activated B-like DLBCL. The molecular classification of tumours on the basis of gene expression can thus identify previously undetected and clinically significant subtypes of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hierarchical clustering of gene expression data.
Figure 2: Expanded view of biologically distinct gene expression signatures defined by hierarchical clustering.
Figure 3: Discovery of DLBCL subtypes by gene expression profiling.
Figure 4: Relationship of DLBCL subgroups to normal B-lymphocyte differentiation and activation.
Figure 5: Clinically distinct DLBCL subgroups defined by gene expression profiling.

Similar content being viewed by others

References

  1. Hodgkin, T. On some morbid appearances of the absorbant glands and spleen. Med.-Chir. Trans. 17, 68–114 (1832).

    Article  CAS  Google Scholar 

  2. Sternberg, C. Über eine eigenartige unter dem Bilde der Pseudoleukamie verlaufende Tuberculose des lymphatischen Apparates. Heilk 19, 21–90 (1898).

    Google Scholar 

  3. Reed, D. M. On the pathological changes in Hodgkin's disease, with especial reference to its relation to tuberculosis. Johns Hopkins Hosp. Rep. 10, 133–196 (1902).

    Google Scholar 

  4. Rosenberg, S. A. Classification of lymphoid neoplasms. Blood 84, 1359–1360 (1994).

    CAS  PubMed  Google Scholar 

  5. Harris, N. L. et al. A revised European–American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84, 1361–1392 ( 1994).

    CAS  Google Scholar 

  6. The Non-Hodgkin's Lymphoma Classification Project : A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. Blood 89, 3909–3918 (1997).

    Google Scholar 

  7. Vose, J. M. Current approaches to the management of non-Hodgkin's lymphoma. Semin. Oncol. 25, 483–491 (1998).

    CAS  PubMed  Google Scholar 

  8. The International Non-Hodgkin's Lymphoma Prognostic Factors Project: A predictive model for aggressive non-Hodgkin's lymphoma. N. Engl. J. Med. 329, 987– 994 (1993).

    Article  Google Scholar 

  9. Klein, U. et al. Somatic hypermutation in normal and transformed human B cells. Immunol. Rev. 162, 261–280 (1998).

    Article  CAS  Google Scholar 

  10. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 ( 1995).

    Article  ADS  CAS  Google Scholar 

  11. Bubendorf, L. et al. Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J. Natl Cancer Inst. 91, 1758–1764 ( 1999).

    Article  CAS  Google Scholar 

  12. Wang, K. et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene 229, 101– 108 (1999).

    Article  CAS  Google Scholar 

  13. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 , 531–537 (1999).

    Article  CAS  Google Scholar 

  14. Khan, J. et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 58, 5009– 5013 (1998).

    CAS  Google Scholar 

  15. Perou, C. M. et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl Acad. Sci. USA 96, 9212–217 (1999).

    Article  ADS  CAS  Google Scholar 

  16. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457– 460 (1996).

    Article  CAS  Google Scholar 

  17. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA 96, 6745– 6750 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Alizadeh, A. et al. The Lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harbor Symp. Quant. Biol. (in the press).

  19. Alizadeh, A., Eisen, M., Botstein, D., Brown, P. O. & Staudt, L. M. Probing lymphocyte biology by genomic-scale gene expression analysis. J. Clin. Immunol. 18, 373–379 (1998).

    Article  CAS  Google Scholar 

  20. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863– 14868 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Grogan, T. M. et al. Independent prognostic significance of a nuclear proliferation antigen in diffuse large cell lymphomas as determined by the monoclonal antibody Ki-67. Blood 71, 1157–1160 (1988).

    CAS  PubMed  Google Scholar 

  22. Staudt, L. M., Dent, A. L., Shaffer, A. L. & Yu, X. Regulation of lymphocyte cell fate decisions and lymphomagenesis by BCL-6. Int. J. Immunol. 18, 381–403 (1999).

    CAS  Google Scholar 

  23. Bahler, D. W. & Levy, R. Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc. Natl Acad. Sci. USA 89, 6770–6774 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Liu, Y. -J. & Banchereau, J. in Handbook of Experimental Immunology (eds Weir, D., Blackwell, C., Herzenberg, L. & Herzenberg, L.) 93.1–93.9 (Blackwell Scientific, Oxford, 1996).

    Google Scholar 

  25. Golay, J., Erba, E., Bernasconi, S., Peri, G. & Introna, M. The A-myb gene is preferentially expressed in tonsillar CD38+, CD39-, and sIgM- B lymphocytes and in Burkitt's lymphoma cell lines. J. Immunol. 153, 543–553 ( 1994).

    CAS  PubMed  Google Scholar 

  26. Kuo, F. C. & Sklar, J. Augmented expression of a human gene for 8-oxoguanine DNA glycosylase (MutM) in B lymphocytes of the dark zone in lymph node germinal centers. J. Exp. Med. 186, 1547–1556 (1997).

    Article  CAS  Google Scholar 

  27. Flenghi, L. et al. A specific monoclonal antibody (PG-B6) detects expression of the BCL-6 protein in germinal center B cells. Am. J. Pathol . 147, 405–411 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pittaluga, S. et al. BCL-6 expression in reactive lymphoid tissue and in B-cell non-Hodgkin's lymphomas. J. Pathol. 179, 145–150 (1996).

    Article  CAS  Google Scholar 

  29. Zani, V. J. et al. Molecular cloning of complex chromosomal translocation t(8;14;12)(q24. 1;q32. 3;q24. 1) in a Burkitt lymphoma cell line defines a new gene (BCL7A) with homology to caldesmon. Blood 87, 3124 –3134 (1996).

    CAS  PubMed  Google Scholar 

  30. Fukuda, T. et al. Disruption of the Bcl6 gene results in an impaired germinal center formation. J. Exp. Med. 186, 439– 448 (1997).

    Article  CAS  Google Scholar 

  31. Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nature Genet. 16, 161–170 (1997).

    Article  CAS  Google Scholar 

  32. Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  Google Scholar 

  33. Rabbitts, T. H. LMO T-cell translocation oncogenes typify genes activated by chromosomal translocations that alter transcription and developmental processes. Genes Dev. 12, 2651–2657 ( 1998).

    Article  CAS  Google Scholar 

  34. Iida, S. et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nature Genet. 17, 226– 230 (1997).

    Article  CAS  Google Scholar 

  35. Matsuyama, T. et al. Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res. 23, 2127–2136 (1995).

    Article  CAS  Google Scholar 

  36. Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    Article  CAS  Google Scholar 

  37. Tschopp, J., Irmler, M. & Thome, M. Inhibition of fas death signals by FLIPs. Curr. Opin. Immunol. 10, 552–558 ( 1998).

    Article  CAS  Google Scholar 

  38. Djerbi, M. et al. The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J. Exp. Med. 190, 1025–1031 ( 1999).

    Article  CAS  Google Scholar 

  39. Medema, J. P., de Jong, J., van Hall, T., Melief, C. J. M. & Offringa, R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med. 190, 1033–1038 (1999).

    Article  CAS  Google Scholar 

  40. Fisher, R. I. et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N. Engl. J. Med. 328, 1002–1006 ( 1993).

    Article  CAS  Google Scholar 

  41. Jalkanen, S., Joensuu, H., Soderstrom, K. O. & Klemi, P. Lymphocyte homing and clinical behavior of non-Hodgkin's lymphoma. J. Clin. Invest. 87, 1835–1840 (1991).

    Article  CAS  Google Scholar 

  42. Harada, S. et al. Molecular and immunological dissection of diffuse large B cell lymphoma: CD5-, and CD5- with CD10+ groups may constitute clinically relevant subtypes. Leukemia 13, 1441– 1447 (1999).

    Article  CAS  Google Scholar 

  43. Kramer, M. H. et al. Clinical significance of bcl2 and p53 protein expression in diffuse large B-cell lymphoma: a population-based study. J. Clin. Oncol. 14, 2131–2138 ( 1996).

    Article  CAS  Google Scholar 

  44. Preti, H. A. et al. Prognostic value of serum interleukin-6 in diffuse large-cell lymphoma. Ann. Int. Med. 127, 186– 194 (1997).

    Article  CAS  Google Scholar 

  45. Gascoyne, R. D. et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma. Blood 90, 244–251 ( 1997).

    CAS  Google Scholar 

  46. Kramer, M. H. et al. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood 92, 3152–3162 (1998).

    CAS  Google Scholar 

  47. Klein, U., Rajewsky, K. & Kuppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679– 1689 (1998).

    Article  CAS  Google Scholar 

  48. Tangye, S. G., Liu, Y. J., Aversa, G., Phillips, J. H. & de Vries, J. E. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J. Exp. Med. 188, 1691–1703 (1998).

    Article  CAS  Google Scholar 

  49. Allman, D. et al. BCL-6 expression during B-cell activation. Blood 87, 5257–5268 (1996).

    CAS  Google Scholar 

  50. Eisen, M. B. & Brown, P. O. DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179– 205 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Cancer Genome Anatomy Project (CGAP), led by B. Strausberg and R. Klausner. We also thank R. Klausner for comments on the manuscript; C. Prange for providing CGAP cDNA clones; H. Messner for providing DLBCL cell lines; H. Mostowski for sorting lymphocyte subpopulations by FACS; Holy Cross Hospital, Silver Spring, Maryland, for providing human tonsils; J. DeRisi for helpful advice on microarray technology; and members of the Staudt, Brown and Botstein laboratories for helpful discussions. Research at Stanford was supported by grants from the National Cancer Institute to D.B., R.L. and P.O.B. and by the Howard Hughes Medical Institute. P.O.B. is an Associate Investigator of the Howard Hughes Medical Institute. A.A. was initially supported by the Howard Hughes Medical Institute Research Scholar Program while at the NIH and then by the Medical Scientist Training Program at Stanford University. M.B.E. was supported by a Computational Molecular Biology Postdoctoral Fellowship from the Alfred E. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Staudt.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, A., Eisen, M., Davis, R. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000). https://doi.org/10.1038/35000501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000501

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing