Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

In search of the tumour-suppressor functions of BRCA1 and BRCA2

Abstract

Hereditary breast and ovarian cancer syndromes can be caused by loss-of-function germline mutations in one of two tumour-suppressor genes, BRCA1 and BRCA2 (ref. 1). Each gene product interacts with recombination/DNA repair proteins in pathways that participate in preserving intact chromosome structure. However, it is unclear to what extent such functions specifically suppress breast and ovarian cancer. Here we analyse what is known of BRCA gene function and highlight some unanswered questions in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and localization of BRCA proteins.
Figure 2: Checkpoint inactivation and BRCA gene-mediated tumorigenesis.
Figure 3: Proposed role for the BRCA proteins in sister chromatid recombination.

Similar content being viewed by others

References

  1. Welcsh, P. L., Owens, K. N. & King, M. C. Insights into the functions of BRCA1 and BRCA2. Trends Genet. 16, 69–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Sharan, S. K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Chen, J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumoursuppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, L. C. et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nature Genet. 14, 430–440 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Keegan, K. S. et al. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev. 10 , 2423–2437 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162– 1166 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Deng, C. X. & Scott, F. Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene 19, 1059–1064 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  10. Hakem, R. et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009 –1023 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Patel, K. J. et al. Involvement of Brca2 in DNA repair. Mol. Cell 1, 347–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Sonoda, E. et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17, 598– 608 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scully, R. et al. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol. Cell 4, 1093– 1099 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Snouwaert, J. N. et al. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a brca1 transgene. Oncogene 18, 7900–7907 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  16. Scully, R., Puget, N. & Vlasakova, K. DNA polymerase stalling, sister chromatid recombination and the BRCA genes. Oncogene (in the press).

  17. Fornace, A. J. Jr Recombination of parent and daughter strand DNA after UV-irradiation in mammalian cells. Nature 304, 552–554 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25, 156– 165 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Cordeiro-Stone, M., Makhov, A. M., Zaritskaya, L. S. & Griffith, J. D. Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J. Mol. Biol. 289, 1207–1218 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rotman, G. & Shiloh, Y. ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135– 6144 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Gowen, L. C., Avrutskaya, A. V., Latour, A. M., Koller, B. H. & Leadon, S. A. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science 281, 1009–1012 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chapman, M. S. & Verma, I. M. Transcriptional activation by BRCA1. Nature 382, 678– 679 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Monteiro, A. N., August, A. & Hanafusa, H. Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc. Natl Acad. Sci. USA 93, 13595–13599 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milner, J., Ponder, B., Hughes-Davies, L., Seltmann, M. & Kouzarides, T. Transcriptional activation functions in BRCA2. Nature 386, 772– 773 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Irminger-Finger, I., Siegel, B. D. & Leung, W. C. The functions of breast cancer susceptibility gene 1 (BRCA1) product and its associated proteins. Biol. Chem. 380, 117–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Bochar, D. A. et al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102, 257–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Guarente, L. Diverse and dynamic functions of the Sir silencing complex. Nature Genet. 23, 281–285 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  31. Paul, T. P. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    Article  Google Scholar 

  32. Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364–11369 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development 125, 1921–1930 (1998).

    CAS  PubMed  Google Scholar 

  34. Tokunaga, M. et al. Malignant breast tumors among atomic bomb survivors, Hiroshima and Nagasaki, 1950–74. J. Natl Cancer Inst. 62 , 1347–1359 (1979).

    CAS  PubMed  Google Scholar 

  35. Wolden, S. L., Lamborn, K. R., Cleary, S. F., Tate, D. J. & Donaldson, S. S. Second cancers following pediatric Hodgkin's disease. J. Clin. Oncol. 16, 536 –544 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Kinzler, K. W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Fishman, J., Osborne, M. P. & Telang, N. T. The role of estrogen in mammary carcinogenesis. Ann. NY Acad. Sci. 768, 91–100 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Henikoff, S. Nuclear organization and gene expression: homologous pairing and long-range interactions. Curr. Opin. Cell Biol. 9, 388–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev. 11, 2494–2509 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66– 71 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. (in the press).

  42. Le Page, F. et al. BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells.. Cancer Res. 60, 5548–5552 ( 2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank many colleagues for stimulating discussions and for sharing data before publication. In particular, J. Feunteun, R. Tibbetts, R. Abraham, W. Bonner, M. Gellert and P. Adams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Scully.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scully, R., Livingston, D. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432 (2000). https://doi.org/10.1038/35044000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing