Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reg-2 is a motoneuron neurotrophic factor and a signalling intermediate in the CNTF survival pathway

Abstract

Cytokines that are related to ciliary neurotrophic factor (CNTF) are physiologically important survival factors for motoneurons, but the mechanisms by which they prevent neuronal cell death remain unknown. Reg-2/PAP I (pancreatitis-associated protein I), referred to here as Reg-2, is a secreted protein whose expression in motoneurons during development is dependent on cytokines. Here we show that CNTF-related cytokines induce Reg-2 expression in cultured motoneurons. Purified Reg-2 can itself act as an autocrine/paracrine neurotrophic factor for a subpopulation of motoneurons, by stimulating a survival pathway involving phosphatidylinositol-3-kinase, Akt kinase and NF-κB. Blocking Reg-2 expression in motoneurons using Reg-2 antisense adenovirus specifically abrogates the survival effect of CNTF on cultured motoneurons, indicating that Reg-2 expression is a necessary step in the CNTF survival pathway. Reg-2 shows a unique pattern of expression in late embryonic spinal cord: it is progressively upregulated in individual motoneurons on a cell-by-cell basis, indicating that only a fraction of motoneurons in a given motor pool may be exposed to cytokines. Thus, Reg-2 is a neurotrophic factor for motoneurons, and is itself an obligatory intermediate in the survival signalling pathway of CNTF-related cytokines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Reg-2 in motoneurons is tightly regulated by CNTF-related cytokines.
Figure 2: Reg-2 is an autocrine/paracrine motoneuron survival factor.
Figure 3: Reg-2 signals for survival through PI(3)K/Akt kinase and NF-κB.
Figure 4: CNTF survival signalling requires Reg-2.
Figure 5: Fraction of motoneurons expressing Reg-2 increases with time during the period of naturally occurring motoneuron cell death.
Figure 6: Reg-2 expression in vivo is controlled on a cell-by-cell basis.

Similar content being viewed by others

References

  1. Henderson, C. E. Role of neurotrophic factors in neuronal development. Curr. Opin. Neurobiol. 6, 64–70 ( 1996).

    Article  CAS  Google Scholar 

  2. Stahl, N. et al. Cross-linking identifies leukemia inhibitory factor-binding protein as a ciliary neurotrophic factor receptor component. J. Biol. Chem. 268, 7628–7631 ( 1993).

    CAS  PubMed  Google Scholar 

  3. Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F. & Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–314 ( 1998).

    Article  CAS  Google Scholar 

  4. Henderson, C. E. et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266, 1062–1064 (1994).

    Article  CAS  Google Scholar 

  5. Arakawa, Y., Sendtner, M. & Thoenen, H. Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J. Neurosci. 10, 3507–3515 (1990).

    Article  CAS  Google Scholar 

  6. Sendtner, M., Kreutzberg, G. W. & Thoenen, H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345, 440–441 (1990).

    Article  CAS  Google Scholar 

  7. Pennica, D. et al. Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 17 , 63–74 (1996).

    Article  CAS  Google Scholar 

  8. Sendtner, M. et al. Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358, 502–504 ( 1992).

    Article  CAS  Google Scholar 

  9. Sendtner, M. Gene therapy for motor neuron disease. Nature Med. 3, 380–381 (1997).

    Article  CAS  Google Scholar 

  10. Sagot, Y., Tan, S. A., Hammang, J. P., Aebischer, P. & Kato, A. C. GDNF slows loss of motoneurons but not axonal degeneration or premature death of pmn/pmn mice . J. Neurosci. 16, 2335– 2341 (1996).

    Article  CAS  Google Scholar 

  11. Mitsumoto, H. et al. Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265, 1107– 1110 (1994).

    Article  CAS  Google Scholar 

  12. Haase, G. et al. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nature Med. 3, 429–436 (1997).

    Article  CAS  Google Scholar 

  13. Okamoto, H. The Reg gene family and Reg proteins: with special attention to the regeneration of pancreatic β-cells. J. Hepatobiliary Pancreat. Surg. 6, 254–262 (1999).

    Article  CAS  Google Scholar 

  14. Iovanna, J., Orelle, B., Keim, V. & Dagorn, J. C. Messenger RNA sequence and expression of rat pancreatitis-associated protein, a lectin-related protein overexpressed during acute experimental pancreatitis. J. Biol. Chem. 266, 24664–24669 (1991).

    CAS  PubMed  Google Scholar 

  15. Orelle, B., Keim, V., Masciotra, L., Dagorn, J. C. & Iovanna, J. L. Human pancreatitis-associated protein. Messenger RNA cloning and expression in pancreatic diseases. J. Clin. Invest. 90, 2284–2291 (1992).

    Article  CAS  Google Scholar 

  16. Ortiz, E. M. et al. The pancreatitis-associated protein is induced by free radicals in AR4-2J cells and confers cell resistance to apoptosis. Gastroenterology 114, 808–816 ( 1998).

    Article  CAS  Google Scholar 

  17. de la Monte, S. M., Ozturk, M. & Wands, J. R. Enhanced expression of an exocrine pancreatic protein in Alzheimer's disease and the developing human brain. J. Clin. Invest. 86, 1004–1013 (1990).

    Article  CAS  Google Scholar 

  18. Livesey, F. J. et al. A Schwann cell mitogen accompanying regeneration of motor neurons. Nature 390, 614– 618 (1997).

    Article  CAS  Google Scholar 

  19. Dusetti, N. J., Ortiz, E. M., Mallo, G. V., Dagorn, J. C. & Iovanna, J. L. Pancreatitis-associated protein I (PAP I), an acute phase protein induced by cytokines. Identification of two functional interleukin-6 response elements in the rat PAP I promoter region. J. Biol. Chem. 270, 22417– 22421 (1995).

    Article  CAS  Google Scholar 

  20. Arce, V. et al. Cardiotrophin-1 requires LIFRβ to promote survival of mouse motoneurons purified by a novel technique. J. Neurosci. Res. 55, 119–126 (1999).

    Article  CAS  Google Scholar 

  21. Kobayashi, S. et al. Identification of a receptor for reg (regenerating gene) protein, a pancreatic beta-cell regeneration factor. J. Biol. Chem. 275, 10723–10726 (2000).

    Article  CAS  Google Scholar 

  22. Middleton, G. et al. Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons. J. Cell Biol. 148 , 325–332 (2000).

    Article  CAS  Google Scholar 

  23. Romashkova, J. A. & Makarov, S. S. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401, 86–90 (1999).

    Article  CAS  Google Scholar 

  24. Yamamoto, Y. & Henderson, C. E. Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat. Dev. Biol. 214, 60– 71 (1999).

    Article  CAS  Google Scholar 

  25. MacLennan, A. J. et al. Immunohistochemical localization of ciliary neurotrophic factor receptor alpha expression in the rat nervous system. J. Neurosci. 16, 621–630 ( 1996).

    Article  CAS  Google Scholar 

  26. Li, M., Sendtner, M. & Smith, A. Essential function of LIF receptor in motor neurons . Nature 378, 724–727 (1995).

    Article  CAS  Google Scholar 

  27. deLapeyriere, O. & Henderson, C. E. Motoneuron differentiation, survival and synaptogenesis. Curr. Opin. Genet. Dev. 7, 642–650 ( 1997).

    Article  CAS  Google Scholar 

  28. Oppenheim, R. W. Neurotrophic survival molecules for motoneurons: an embarrassment of riches . Neuron 17, 195–197 (1996).

    Article  CAS  Google Scholar 

  29. Davies, A. M. & Wright, E. M. Neurotrophic factors. Neurotrophin autocrine loops. Curr. Biol. 5, 723–726 (1995).

    Article  CAS  Google Scholar 

  30. Acheson, A. et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374, 450– 453 (1995).

    Article  CAS  Google Scholar 

  31. Maina, F. et al. Multiple roles for hepatocyte growth factor in sympathetic neuron development. Neuron 20, 835– 846 (1998).

    Article  CAS  Google Scholar 

  32. Ernfors, P., Merlio, J.-P. & Persson, H. Cells expressing mRNA for neurotrophins and their receptors during embryonic rat development. Eur. J. Neurosci. 4, 1140–1158 (1992).

    Article  Google Scholar 

  33. Henderson, C. E. et al. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363, 266– 270 (1993).

    Article  CAS  Google Scholar 

  34. Kahane, N., Shelton, D. L. & Kalcheim, C. Expression and regulation of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in distinct avian motoneuron subsets. J. Neurobiol. 29, 277–292 (1996).

    Article  CAS  Google Scholar 

  35. Garcès, A., Nishimune, H., Philippe, J. M., Pettmann, B. & deLapeyrière, O. FGF9: a motoneuron survival factor expressed by medial thoracic and sacral motoneurons. J. Neurosci. Res. 60, 1– 9 (2000).

    Article  Google Scholar 

  36. Pettmann, B. & Henderson, C. E. Neuronal cell death. Neuron 20, 633–647 (1998).

    Article  CAS  Google Scholar 

  37. Wiese, S. et al. The anti-apoptotic protein ITA is essential for NGF-mediated survival of embryonic chick neurons. Nature Neurosci. 2, 978–983 (1999).

    Article  CAS  Google Scholar 

  38. Raoul, C., Henderson, C. E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol. 147, 1049–1062 (1999).

    Article  CAS  Google Scholar 

  39. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115–1123 (1996).

    Article  CAS  Google Scholar 

  40. Harris, A. J. & McCaig, C. D. Motoneuron death and motor unit size during embryonic development of the rat. J. Neurosci. 4, 13–24 ( 1984).

    Article  CAS  Google Scholar 

  41. Nakashima, K. et al. Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J. Neurosci. 19, 5429–5434 (1999).

    Article  CAS  Google Scholar 

  42. Mettling, C. et al. Survival of newly postmitotic motoneurons is transiently independent of exogenous trophic support. J. Neurosci. 15, 3128–3137 (1995).

    Article  CAS  Google Scholar 

  43. Gould, T. W., Burek, M. J., Sosnowski, J. M., Prevette, D. & Oppenheim, R. W. The spatial-temporal gradient of naturally occurring motoneuron death reflects the time of prior exit from the cell cycle and position within the lateral motor column. Dev. Biol. 216, 611–621 (1999).

    Article  CAS  Google Scholar 

  44. McKay, S. E. et al. The expression of trkB and p75 and the role of BDNF in the developing neuromuscular system of the chick embryo. Development 122, 715–724 ( 1996).

    CAS  PubMed  Google Scholar 

  45. Stöckli, K. A. et al. Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342, 920–923 (1989).

    Article  Google Scholar 

  46. Sendtner, M. et al. Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Curr. Biol. 6, 686–694 ( 1996).

    Article  CAS  Google Scholar 

  47. DeChiara, T.M. et al. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83, 313–322 (1995).

    Article  CAS  Google Scholar 

  48. Funakoshi, H. et al. Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268, 1495–1499 (1995).

    Article  CAS  Google Scholar 

  49. Bödeker, H., Keim, V., Fiedler, F., Dagorn, J. C. & Iovanna, J. PAP I interacts with itself, PAP II, PAP III and lithostathine/regIa. Mol. Biol. Cell. Res. Comm. 2, 150–154 ( 1999).

    Article  Google Scholar 

  50. Foxwell, B. et al. Efficient adenoviral infection with IkappaB alpha reveals that macrophage tumor necrosis factor alpha production in rheumatoid arthritis is NF-κB dependent. Proc. Natl Acad. Sci. USA 95, 8211–8215 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. R. Sanes and members of U.382 for valuable discussions and critical review of the manuscript. We are grateful to S. P. Hunt for anti Reg-2 antibody; J. R. Sanes for anti β-gal antibody; T. Jessell for Isl1 and Chat plasmids; H. Bödeker for purification of Reg-2 protein and rat Reg-2 plasmid; D. Pennica for CT-1 null mutant mice; C. Lasserre for mouse Reg-2 plasmid; C. J. Woolf for adenovirus coding LacZ; A. Garcès and J. Livet for the WM-ISH technique for spinal cord; V. Arce for technical suggestions; R. Goetz for genotyping the LIF/CNTF knockout embryo; and C. Moretti for confocal microscopy techniques. This work was funded by the Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Association Française contre les Myopathies (AFM), Institut pour la Recherche sur la Moelle Epinière (IRME), and European Commission BIO4 contract CT960433. H.N. was supported by JST Overseas Research Fellowship and a postdoctoral fellowship from NOVARTIS Foundation (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Henderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimune, H., Vasseur, S., Wiese, S. et al. Reg-2 is a motoneuron neurotrophic factor and a signalling intermediate in the CNTF survival pathway. Nat Cell Biol 2, 906–914 (2000). https://doi.org/10.1038/35046558

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046558

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing