Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uncoupling of the molecular 'fence' and paracellular 'gate' functions in epithelial tight junctions

Abstract

DURING epithelial morphogenesis, the establishment of tight junctions precedes the development of both the asymmetry in protein and lipid composition between apical and basolateral cell surfaces (the 'fence' function) and the restriction in the transport of ions and nonelectrolytes through the extracellular clefts between cells (the 'gate' function)1,2. Molecular models that explain both functions envision strands of particles extending as rings in the cell's perimeter that interact with similar strands located at the apposing cell2–5. This model accounts for the 'fence' function, because the strands prevent diffusion of protein and lipids, and also for the 'gate' function, because the interaction between strands minimizes the width of the extracellular clefts, increasing transepithelial resistance to ions and decreasing non-electrolyte permeability. Here we describe the results of energy depletion, which for the first time separates both functions: it abolishes the gate function, as determined by the dramatic decrease in transepithelial resistance, but it leaves the fence function intact, as determined by the maintenance of lipid polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Diamond, J. Physiologist 20, 10–18 (1977).

    CAS  PubMed  Google Scholar 

  2. Gumbiner, B. Am. J. Physiol. 253, C749–C758 (1987).

    Article  CAS  Google Scholar 

  3. Claude, P. & Goodenough, D. A. J. Cell Biol. 58, 390–400 (1973).

    Article  CAS  Google Scholar 

  4. Claude, P. J. Membr. Biol. 39, 219–232 (1978).

    Article  CAS  Google Scholar 

  5. Cereijido, M., Ponce, A. P. & Gonzalez-Mariscal, L. J. membr. Biol. 110, 1–9 (1989).

    Article  CAS  Google Scholar 

  6. Dragsten, P. R., Blumenthal, R. & Handler, J. S. Nature 294, 718–722 (1981).

    Article  ADS  CAS  Google Scholar 

  7. van Meer, G. & Simons, K. EMBO J. 5, 1455–1464 (1986).

    Article  CAS  Google Scholar 

  8. Nelson, W. J. & Hammerton, R. W. J. Cell Biol. 108, 893–902 (1989).

    Article  CAS  Google Scholar 

  9. Bennett, V. & Lambert, S. J. clin. Invest. 87, 1483–1489 (1991).

    Article  CAS  Google Scholar 

  10. Muckter, H. Ben-Shaul, Y. & Bacher, A. Eur. J. Cell Biol. 44, 258–264 (1987).

    CAS  PubMed  Google Scholar 

  11. Nigam, S. K., Denisenko, N., Rodriguez-Boulan, E. & Citi, S. Biochem. biophys. Res. Commun. 181, 548–553 (1991).

    Article  CAS  Google Scholar 

  12. Molitoris, B. A., Dahl, R. H. & Falk, S. A., J. clin. Invest. 84, 1334–1339 (1989).

    Article  CAS  Google Scholar 

  13. Stevenson, B. R., Anderson, J. M. & Bullivant, S. Molec. cell. Biochem. 83, 129–145 (1988).

    Article  CAS  Google Scholar 

  14. Stevenson, B. R., Anderson, J. M., Goodenough, D. A. & Mooseker, M. S. J. Cell Biol. 107, 2401–2408 (1988).

    Article  CAS  Google Scholar 

  15. Ladino, C., Schneeberger, E. E., Rabito, C. A. & Lynch, R. D. Eur. J. Cell Biol. 55, 217–224 (1991).

    CAS  PubMed  Google Scholar 

  16. Madara, J. L. & Dharmsathaphorn, K. J. Cell Biol. 101, 2124–2133 (1985).

    Article  CAS  Google Scholar 

  17. Ojakian, G. Cell 23, 95–103 (1981).

    Article  CAS  Google Scholar 

  18. Mullin, J. E. & O'Brien, T. G. Am. J. Physiol. 251, C597–C602 (1986).

    Article  CAS  Google Scholar 

  19. Madara, J. L. J. clin. Invest. 83, 1089–1094 (1989).

    Article  CAS  Google Scholar 

  20. Mandel, L. J., Takano, T., Soltoff, S. P. & Murdaugh, S. J. clin. Invest. 81, 1255–1264 (1988).

    Article  CAS  Google Scholar 

  21. Bacallao, R., Bomsel, M., Stelzer, E. H. K. & De Mey, J. in Handbook of Biological Confocal Microscopy (ed. Pawley, J. B.) 197–205 (Plenum, New York, 1990).

    Book  Google Scholar 

  22. Zampighi, G., Kreman, M., Ramon, F., Moreno, A. L. & Simon, S. A. J. Cell Biol. 106, 1667–1678 (1988).

    Article  CAS  Google Scholar 

  23. Pagano, R. E. & Martin, O. C. Biochemistry 27, 4439–4445 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandel, L., Bacallao, R. & Zampighi, G. Uncoupling of the molecular 'fence' and paracellular 'gate' functions in epithelial tight junctions. Nature 361, 552–555 (1993). https://doi.org/10.1038/361552a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361552a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing