Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1

Abstract

INTRACELLULAR signalling following mitogenic stimulation of quiescent cells involves the initiation of a phosphorylation cascade that leads to the rapid and reversible activation of the mitogen-activated protein (MAP) kinases ERK1 and ERK2 (refs 1,2). MAP kinase activation is mediated by dual phosphorylation within the motif Thr-Glu-Tyr by MAP kinase kinase (MEK)3. Following activation, the MAP kinases translocate into the nucleus where they phosphorylate several transduction targets, including transcription factors4–7. We have previously identified PAC1 as an immediate-early mitogen-inducible tyrosine phosphatase in nuclei of T cells8. Here we present several lines of evidence indicating that PAC1 is a physiologically relevant MAP kinase phosphatase. Recombinant PAC1 in vitro is a dual-specific Thr/Tyr phosphatase with stringent substrate specificity for MAP kinase. Constitutive expression of PAC1 in vivo leads to inhibition of MAP kinase activity normally stimulated by epidermal growth factor, phorbol myristyl acetate, or T-cell receptor crosslinking. The inactivation of MAP kinase by PAC1 results in inhibition of MAP kinase-regulated reporter gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ruderman, J. V. Curr. Opin. Cell Biol. 5, 207–213 (1993).

    Article  CAS  Google Scholar 

  2. Nishida, E. & Gotoh, Y. Trends biochem. Sci. 18, 128–131 (1993).

    Article  CAS  Google Scholar 

  3. Ahn, N. G., Seger, R. & Krebs, E. G. Curr. Opin. Cell Biol. 4, 992–999 (1992).

    Article  CAS  Google Scholar 

  4. Gonzalez, F. A. et al. J. Cell Biol. 122, 1089–1101 (1993).

    Article  CAS  Google Scholar 

  5. Alvarez, E. et al. J. biol. Chem. 266, 15277–15285 (1991).

    CAS  PubMed  Google Scholar 

  6. Chen, R., Sarnecki, C. & Blenis, J. Molec. cell. Biol. 12, 915–927 (1992).

    Article  CAS  Google Scholar 

  7. Davis, R. J. J. biol. Chem. 268, 14553–14556 (1993).

    CAS  PubMed  Google Scholar 

  8. Rohan, P. J. et al. Science 259, 1763–1766 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Payne, D. M. et al. EMBO J. 10, 885–892 (1991).

    Article  CAS  Google Scholar 

  10. Zheng, C.-F. & Guan, K.-L. J. biol. Chem. 268, 16116–16119 (1993).

    CAS  PubMed  Google Scholar 

  11. Keyse, S. M. & Emslie, E. A. Nature 359, 644–647 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Marais, R., Wynne, J. & Treisman, R. Cell 73, 381–393 (1993).

    Article  CAS  Google Scholar 

  13. Hill, C. S. et al. Cell 73, 395–406 (1993).

    Article  CAS  Google Scholar 

  14. Graham, R. & Gilman, M. Science 251, 189–192 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Gille, H., Sharrocks, A. D. & Shaw, P. E. Nature 358, 414–417 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Charles, C. H., Abler, A. S. & Lau, L. F. Oncogene 7, 187–190 (1992).

    CAS  PubMed  Google Scholar 

  17. Alessi, D. R., Smythe, C. & Keyse, S. M. Oncogene 8, 2015–2020 (1993).

    CAS  PubMed  Google Scholar 

  18. Charles, C. H., Sun, H., Lau, L. F. & Tonks, N. K. Proc. natn. Acad. Sci. U.S.A. 90, 5292–5296 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Sun, H., Charles, C. H., Lau, L. F. & Tonks, N. K. Cell 75, 487–493 (1993).

    Article  CAS  Google Scholar 

  20. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  21. Siegel, J. N. in Current Protocols in Immunology (eds Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M. & Strober, W.) 11.2.4–11.2.17 (Wiley, New York, 1991).

    Google Scholar 

  22. Kameshita, I. & Fujisawa, H. Analyt. Biochem. 183, 139–143 (1989).

    Article  CAS  Google Scholar 

  23. Seth, A., Gonzalez, F. A., Gupta, S., Raden, D. L. & Davis, R. J. J. biol. Chem. 267, 24796–24804 (1992).

    CAS  PubMed  Google Scholar 

  24. Northwood, I. C., Gonzalez, F. A., Wartmann, M., Raden, D. L. & Davis, R. J. J. biol. Chem. 266, 15266–15276 (1991).

    CAS  PubMed  Google Scholar 

  25. Harlow, E. & Lane, D. Antibodies. A Laboratory Manual 1–726 (Cold Spring Harbor Laboratory Press. New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, Y., Gupta, S., Jensen, P. et al. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367, 651–654 (1994). https://doi.org/10.1038/367651a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367651a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing