Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of serotonin-2C receptor G-protein coupling by RNA editing

Abstract

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) elicits a wide array of physiological effects by binding to several receptor subtypes. The 5-HT2 family of receptors belongs to a large group of seven-transmembrane-spanning G-protein-coupled receptors and includes three receptor subtypes (5-HT2A, 5-HT2B and 5-HT2C) which are linked to phospholipase C, promoting the hydrolysis of membrane phospholipids and a subsequent increase in the intracellular levels of inositol phosphates and diacylglycerol1. Here we show that transcripts encoding the 2C subtype of serotonin receptor (5-HT2CR) undergo RNA editing events in which genomically encoded adenosine residues are converted to inosines by the action of double-stranded RNA adenosine deaminase(s). Sequence analysis of complementary DNA isolates from dissected brain regions have indicated the tissue-specific expression of seven major 5-HT2C receptor iso-forms encoded by eleven distinct RNA species. Editing of 5-HT2CR messenger RNAs alters the amino-acid coding potential of the predicted second intracellular loop of the receptor and can lead to a 10–15-fold reduction in the efficacy of the interaction between receptors and their G proteins. These observations indicate that RNA editing is a new mechanism for regulating serotonergic signal transduction and suggest that this post-transcriptional modification may be critical for modulating the different cellular functions that are mediated by other members of the G-protein-coupled receptor superfamily.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoyer, D. et al. IUP classification of receptors for 5-hydroxytryptamine (serotonin). Pharrnacol. Rev. 46, 157–203 (1994).

    CAS  Google Scholar 

  2. Polson, A. G., Bass, B. L. & Casey, J. L. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 380, 454–456 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article  CAS  Google Scholar 

  4. Lomeli, H. et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709–1713 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Kohler, M., Burnashev, N., Sakmann, B. & Seeburg, P. Determinants of Ca2+ permeabiity in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500 (1993).

    Article  CAS  Google Scholar 

  6. Egebjerg, J. & Heinemann, S. F. Intron sequence directs RNA editing of the glutamate receptor subunit GluR2 coding sequence. Proc. Natl Acad. Sci. USA 90, 755–759 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Zuker, M. Computer prediciton of RNA structure. Meth. Enzymol. 180, 262–288 (1989).

    Article  CAS  Google Scholar 

  8. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines positon and efficiency. Cell 75, 1361–1370 (1993).

    Article  CAS  Google Scholar 

  9. Herb, A., Higuchi, M., Sprengel, R. & Seeburg, P. H. Q/R site editing in kainate receptor GluRS and GluR6 pre-mRNAs requires distant intronic sequences. Proc. Natl Acad. Sci. USA 93, 1875–1880 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Rueter, S. et al. Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science 267, 1491–1494 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Yang, J.H., Sklar, P., Axel, R. & Maniatis, T. Editing of glutamate receptor subunit B pre-mRNA in vitro by site-specific deamination of adenosine. Nature 374, 77–81 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Maas, S. et al. Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J. Biol. Chem. 271, 12221–12226 (1996).

    Article  CAS  Google Scholar 

  13. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Bass, B. RNA editing: New uses for old players in the RNA world. The RNA World 383–418 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  15. Gomeza, J. et al. The second intracellular loop of metabotropic glutamate receptor 1 cooperates with the other intracellular domains to control coupling to G-proteins. J. Biol. Chem. 271, 2199–2205 (1996).

    Article  CAS  Google Scholar 

  16. Westphal, R. S., Backstrom, J. R. & Sanders-Bush, E. Increased basal phosphorylation of the constitutively active serotonin 2C receptor accompanies agonist-mediated desensitization. Mol. Pharmacol. 48, 200–205 (1995).

    CAS  PubMed  Google Scholar 

  17. Ariëns, E. J., Beld, A. J., Rodrigues de Miranda, J. F. & Simonis, A. M. The Receptors 33–91 (Plenum, New York, 1979).

    Google Scholar 

  18. Meller, E. et al. Receptor reserve for D2 dopaminergic inhibition of prolactin release in vivo and in vitro. J. Pharmacol. Exp. Ther. 257, 668–675 (1991).

    CAS  PubMed  Google Scholar 

  19. Leonhardt, S., Garospe, E.,, Hoffman, B. J. & Teitler, M. Molecular pharmacological differences in the interaction of serotonin with 5-hydroxytryptamine 1C and 5-hydroxytryptamine2 receptors. Mol. Pharmacol. 42, 328–335 (1992).

    CAS  PubMed  Google Scholar 

  20. Ross, E. M. G protein GTPase-activating proteins: regulation of speed, amplitude, and signaling selectivity. Rec. Prog. Harm. Res. 50, 207–221 (1995).

    CAS  Google Scholar 

  21. Moro, O., Lameh, J., Högger, P. & Sadée, W. Hydrophobic amino acid in the 12 loop plays a key role in receptor-G protein coupling. J. Biol. Chem. 268, 22273–22276 (1993).

    CAS  PubMed  Google Scholar 

  22. Yu, L. et al. The mouse 5-HT1C receptor contains eight hydrophobic domains and is X-linked. Mol. Brain Res. 11, 143–149 (1991).

    Article  CAS  Google Scholar 

  23. Kennelly, P. J. & Krebs, E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266, 15555–15558 (1991).

    CAS  Google Scholar 

  24. Julius, D., MacDermott, A. B., Axel, R. & Jessell, T. M. Molecular characterization of a functional cDNA encoding the serotonin Ic receptor. Science 241, 558–264 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Ausubel, F. et al. (eds) Current Protocols in Molecular Biology (Wiley, New York, 1989).

  26. O'Connell, M. et al. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell Biol. 15, 1389–1397 (1995).

    Article  CAS  Google Scholar 

  27. Gorski, K., Carneiro, M. & Schibler, U. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47, 767–776 (1986).

    Article  CAS  Google Scholar 

  28. Barker, E. L., Westphal, R. S., Schmidt, D. & Sanders-Bush, E. Constitutively active 5-hydroxytrypta-mine2C receptors reveal novel inverse agonist activity of receptor ligands. J. Biol Chem. 269, 11687–11690 (1994).

    CAS  PubMed  Google Scholar 

  29. Westphal, R. S. & Sanders-Bush, E. Reciprocal binding properties of 5-hydroxytryptamine type 2C receptor agonists and inverse agonists. Mol. Pharmacol. 46, 937–942 (1994).

    CAS  PubMed  Google Scholar 

  30. Cheng, Y. & Prusoff, W. H. Relationship between the inhibiton constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, C., Chu, H., Rueter, S. et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308 (1997). https://doi.org/10.1038/387303a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387303a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing