Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular basis of symbiosis between Rhizobium and legumes

Abstract

Access to mineral nitrogen often limits plant growth, and so symbiotic relationships have evolved between plants and a variety of nitrogen-fixing organisms. These associations are responsible for reducing 120 million tonnes of atmospheric nitrogen to ammonia each year. In agriculture, independence from nitrogenous fertilizers expands crop production and minimizes pollution ot water tables, lakes and rivers. Here we present the complete nucleotide sequence and gene complement of the plasmid from Rhizobium sp. NGR234 that endows the bacterium with the ability to associate symbolically with leguminous plants. In conjunction with transcriptional analyses, these data demonstrate the presence of new symbiotic loci and signalling mechanisms. The sequence and organization of genes involved in replication and conjugal transfer are similar to those of Agrobacterium, suggesting a recent lateral transfer of genetic information.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fellay, R., Rochepeau, P., Relić, B. & Broughton, W. J. in Pathogenesis and Host Specificity in Plant Diseases. Histopathological, Biochemical, Genetic and Molecular Bases (eds Singh, U. S., Singh, R. P. & Kohmoto, K.) 199–220 (Pergamon, Oxford, 1995).

    Google Scholar 

  2. Spaink, H. P. Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit. Rev. Plant Sci. 15, 559–582 (1996).

    CAS  Google Scholar 

  3. Dénarié, J., Debellé, F. & Promé, J.-C. Rhizobium lipo-chitooligosaccharide nodulation factors: signalling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65, 503–535 (1996).

    Article  PubMed  Google Scholar 

  4. Fischer, H.-M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev. 58, 352–386 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewin, A. et al. Mutliple host-specificity loci of the broad host-range Rhizobium sp. NGR234 selected using the widely compatible legume Vigna unguiculata. Plant Mol. Biol. 8, 447–459 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Broughton, W. J., Heycke, N., Meyer, z.A., H., & Pankhurst, C. E. Plasmid-linked nif and “nod” genes in fast-growing rhizobia that nodulate Glycine max, Psophocarpus tetragonolobus, and Vigna unguiculata. Proc. Natl Acad. Sci. USA 81, 3093–3097 (1984).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Freiberg, C., Perret, X., Broughton, W. J. & Rosenthal, A. Sequencing the 500-kb GC-rich symbiotic replicon of Rhizobium sp. NGR234 using dye terminators and a thermostable “Sequenase”: a beginning. Genome Res. 6, 590–600 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Perret, X., Broughton, W. J. & Brenner, S. Canonical ordered cosmid library of the symbiotic plasmid of Rhizobium species NGR234. Proc. Natl Acad. Sci. USA 88, 1923–1927 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Morrisoon, N. A. et al. Mobilization of a sym plasmid from a fast-growing cowpea Rhizobium strain. J. Bacteriol. 160, 483–487 (1984).

    Google Scholar 

  12. Bairoch, A., Bucher, P. & Hofmann, K. The PROSITE database, its status in 1995. Nucleic Acids Res. 24, 189–196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, L., Murphy, P. J., Kerr, A. & Tate, M. E. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362, 446–448 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Piper, K. R., Beck von Bodman, S. & Farrand, S. K. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362, 448–450 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Price, N. P. J. et al. Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated and fucosylated, nodulation signals that are O-acetylated or sulphated. Mol. Microbiol. 6, 3575–3584 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Leigh, J. A. & Walker, G. C. Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet. 10, 63–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Hanin, M. et al. Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host specificity gene. Mol. Microbiol. (in the press).

  18. Fellay, R., Perret, X., Viprey, V., Broughton, W. J. & Brenner, S. Organization of host-inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol. Microbiol. 16, 657–667 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Jabbouri, S. et al. Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 Nod factors. J. Biol. Chem. 270, 22968–22973 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. van Slooten, J. C., Cervantes, E., Broughton, W. J., Wong, C. H. & Stanley, J. Sequence and analysis of the rpoN sigma factor gene of Rhizobium sp. strain NGR234, a primary coregulator of symbiosis. J. Bacterial. 172, 5563–5574 (1990).

    Article  CAS  Google Scholar 

  21. Badenoch-Jones, J., Holton, T. A., Morrison, C. M., Scott, K. F. & Shine, J. Structural and functional analysis of nitrogenase genes from the broad-host range Rhizobium strain ANU240. Gene 77, 141–153 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. van Slooten, J. C., Bhuvanasvari, T. V., Bardin, S. & Stanley, J. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbiosis. Mol. Plant Microbe Interact. 5, 179–186 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Broughton, W. J. et al. Identificaiton of Rhizobium plasmid sequences involved in recognition of Psophocarpus, Vigna, and other legumes. J. Cell Biol. 102, 1173–1183 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Jabbouri, S. et al. in The Biology of Plant-Microbe Interactions (eds Stacey, G., Mullin, B. & Gresshoff, P.) 319–324 (International Society of Molecular Plant-Microbe Interactions, St Paul, MN, 1996).

    Google Scholar 

  25. Krishnan, H. B., Kuo, C.-I. & Pueppke, S. G. Elaboration of flavonoid-induced proteins by the nitrogen-fixing soybean symbiont Rhizobium fredii is regulated by both nodD1 and nodD2, and is dependent on the cultivar-specificity locus, nolXWBTUV. Microbiology 141, 2245–2251 (1995).

    Article  CAS  Google Scholar 

  26. Broughton, W. J., Dilworth, M. J. & Passmore, I. K. Base ratio determination using unpurified DNA. Anal. Biochem. 46, 164–172 (1972).

    Article  CAS  PubMed  Google Scholar 

  27. Broughton, W. J., Samrey, U. & Stanley, J. Ecological genetics of Rhizobium meliloti: symbiotic plasmid transfer in the Medicago sativa rhizosphere. FEMS Microbiol. 40, 251–255(1987).

    Article  CAS  Google Scholar 

  28. Sullivan, J. T., Patrick, H. N., Lowther, W. L., Scott, D. B. & Ronson, C. W. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc. Natl Acad. Sci. USA 92, 8985–8989 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Romero, E. & Cabellero-Mellado, J. Rhizobium phylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci. 15, 113–140 (1996).

    Article  CAS  Google Scholar 

  30. Tepfer, D. in Plant Microbe Interactions (eds Kosuge, T. & Nester, E.) 294–342 (McGraw Hill, New York, 1989).

    Google Scholar 

  31. Galas, D. J. & Chandler, M. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 109–162 (American Society of Microbiology, Washington DC, 1989).

    Google Scholar 

  32. Borodovsky, M., Rudd, K. E. & Koonin, E. V. Intrinsic and extrinsic approaches for detecting genes in a bacterial genome. Nucleic Acids Res. 22, 4756–4767 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiberg, C., Fellay, R., Bairoch, A. et al. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394–401 (1997). https://doi.org/10.1038/387394a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387394a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing