Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF

Abstract

Cross-communication between different signalling systems allows the integration of the great diversity of stimuli that a cell receives under varying physiological situations. The transactivation of epidermal growth factor receptor (EGFR)-dependent signalling pathways upon stimulation of G-protein-coupled receptors (GPCRs), which are critical for the mitogenic activity of ligands such as lysophosphatidic acid, endothelin, thrombin, bombesin and carbachol, provides evidence for such an interconnected communication network1,2,3,4. Here we show that EGFR transactivation upon GPCR stimulation involves proHB-EGF and a metalloproteinase activity that is rapidly induced upon GPCR–ligand interaction. We show that inhibition of proHB-EGF processing blocks GPCR-induced EGFR transactivation and downstream signals. The pathophysiological significance of this mechanism is demonstrated by inhibition of constitutive EGFR activity upon treatment of PC3 prostate carcinoma cells with the metalloproteinase inhibitor batimastat. Together, our results establish a new mechanistic concept for cross-communication among different signalling systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GPCR-induced EP-R transactivation redefines endogenous EGFR-mediated signalling to PDGFR-specific signals.
Figure 2: Carbachol-induced intercellular transactivation of the EGF receptor.
Figure 3: GPCR-induced EGFR transactivation and adapter protein tyrosine phosphorylation is dependent on HB-EGF function.
Figure 4: GPCR-induced proteolytic processing of proHB-EGF and EGFR transactivation are critically dependent on metalloproteinase function.

Similar content being viewed by others

References

  1. Daub,H., Wallasch,C., Lankenau,A., Herrlich,A. & Ullrich,A. Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16, 7032–7044 (1997).

    Article  CAS  Google Scholar 

  2. Daub,H., Weiss,F. U., Wallasch,C. & Ullrich,A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Luttrell,L. M., Daaka,Y. & Lefkowitz,R. J. Regulation of tyrosine cascades by G-protein-coupled receptors. Curr. Opin. Cell Biol. 11, 177–183 (1999).

    Article  CAS  Google Scholar 

  4. Hackel,P. O., Zwick,E., Prenzel,N. & Ullrich,A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol. 11, 184–189 (1999).

    Article  CAS  Google Scholar 

  5. Eguchi,S. et al. Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J. Biol. Chem. 273, 8890–8896 (1998).

    Article  CAS  Google Scholar 

  6. Luttrell,L. M., Della Rocca,G. J., van Biesen,T., Luttrell,E. K. & Lefkowitz,R. J. Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. J. Biol. Chem. 272, 4637–4644 (1997).

    Article  CAS  Google Scholar 

  7. Keely,S. J., Uribe,J. M. & Barrett,K. E. Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. J. Biol. Chem. 273, 27111–27117 (1998).

    Article  CAS  Google Scholar 

  8. Tsai,W., Morielli,A. D. & Peralta,E. G. The m1 muscarinic acetylcholine receptor transactivates the EGF receptor to modulate ion channel activity. EMBO J. 16, 4597–4605 (1997).

    Article  CAS  Google Scholar 

  9. Li,X., Lee,J. W., Graves,L. M. & Earp,H. S. Angiotensin II stimulates ERK via two pathways in epithelial cells: protein kinase C suppresses a G-protein coupled receptor–EGF receptor transactivation pathway. EMBO J. 9, 2574–2583 (1998).

    Article  Google Scholar 

  10. Seedorf,K., Felder,S., Millauer,B., Schlessinger,J. & Ullrich,A. Analysis of platelet-derived growth factor receptor domain function using a novel chimeric receptor approach. J. Biol. Chem. 266, 12424–12431 (1991).

    CAS  PubMed  Google Scholar 

  11. Kovalenko,M. et al. Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation. Cancer Res. 54, 6106–6114 (1994).

    CAS  PubMed  Google Scholar 

  12. Vogel,W., Lammers,R., Huang,J. & Ullrich,A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259, 1611–1614 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Mateo, C. et al. Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology 3, 71–81 (1997).

    Article  CAS  Google Scholar 

  14. Massagué,J. & Pandiella,A. Membrane-anchored growth factors. Annu. Rev. Biochem. 62, 515–541 (1993).

    Article  Google Scholar 

  15. Bosenberg,M. W., Pandiella,A. & Massaqué,J. Activated release of membrane-anchored TGF-α in the absence of cytosol. J. Cell Biol. 122, 95–101 (1993).

    Article  CAS  Google Scholar 

  16. Goishi,K. et al. Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol. Biol. Cell 6, 967–980 (1995).

    Article  CAS  Google Scholar 

  17. Dethlefsen,S. M. et al. Extracellular calcium influx stimulates metalloproteinase cleavage and secretion of heparin-binding EGF-like growth factor independently of protein kinase C. J. Cell. Biochem. 69, 143–153 (1998).

    Article  CAS  Google Scholar 

  18. Zwick, E. et al. Critical role of calcium-dependent epidermal growth factor receptor transactivation in PC12 cells membrane depolarization and bradykinin signaling. J. Biol. Chem. 272, 24767–24770 (1997).

    Article  Google Scholar 

  19. Raab,G. & Klagsbrun,M. Heparin-binding EGF-like growth factor. Biochim. Biophys. Acta 1333, F179–F199 (1997).

    CAS  PubMed  Google Scholar 

  20. Naglich,J. G., Metherall,J. E., Russell,D. W. & Eidels,L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69, 1051–1061 (1992).

    Article  CAS  Google Scholar 

  21. Mitamura,T., Higashiyama,S., Taniguchi,N., Klagsbrun,M. & Mekada,E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J. Biol. Chem. 270, 1015–1019 (1995).

    Article  CAS  Google Scholar 

  22. Chen,Y. et al. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor. EMBO J. 15, 1037–1044 (1996).

    Article  CAS  Google Scholar 

  23. Izumi,Y. et al. A metalloprotease-disintegrin, MDC9/meltrin-γ/ADAM9 and PKCδ are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. 17, 7260–7272 (1998).

    Article  CAS  Google Scholar 

  24. Wojtowicz-Praga,S. M., Dickson,R. B. & Hawkins,M. J. Matrix metalloproteinase inhibitors. Investigational New Drugs 15, 61–75 (1997).

    Article  CAS  Google Scholar 

  25. Ching,K. Z. et al. Expression of mRNA for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines. Mol. Cell Biochem. 126, 151–158 (1993).

    Article  CAS  Google Scholar 

  26. Hoosein,N. M., Logothetis,C. J. & Chung,L. W. K. Differential effects of peptide hormones bombesin, vasoactive intestinal polypeptide and somatostatin analog RC-160 on the invasive capacity of human prostatic carcinoma cells. J. Urol. 149, 1209–1213 (1993).

    Article  CAS  Google Scholar 

  27. Dong,J. et al. Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc. Natl Acad. Sci. USA 96, 6235–6240 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Werb,Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439–442 (1997).

    Article  CAS  Google Scholar 

  29. Schägger,H. & von Jagow,G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDA. Anal. Biochem. 166, 368–379 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Mekada for plasmids containing ADAM9-WT and proteinase-inactive mutants, and J. Bange for the pcDNA3-VSV vector. ICR-3R antibody and batimastat were generous gifts from C. Mateo and K. Maskos, respectively. We thank P. O. Hackel and K. Specht for helpful discussions and I. Sures for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Ullrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prenzel, N., Zwick, E., Daub, H. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999). https://doi.org/10.1038/47260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47260

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing