Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro

Abstract

During the development of hypertrophy, cardiac myocytes increase organization of the sarcomere, a highly ordered contractile unit in striated muscle cells. Several hypertrophic agonists, such as angiotensin II, phenylephrine, and endothelin-1, have been shown to promote the sarcomere organization. However, the signaling pathway, which links extracellular stimuli to sarcomere organization, has not been clearly demonstrated. Here, we demonstrate that myosin light chain kinase specifically mediates agonist-induced sarcomere organization during early hypertrophic response. Acute administration of a hypertrophic agonist, phenylephrine, or angiotensin II, causes phosphorylation of myosin light chain 2v both in cultured cardiac myocytes and in the adult heart in vivo. We also show that both sarcomere organization and myosin light chain 2v phosphorylation are dependent on the activation of Ca2+/calmodulin pathway, a known activator of myosin light chain kinase. These results define a new and specific role of myosin light chain kinase in cardiac myocytes, which may provide a rapid adaptive mechanism in response to hypertrophic stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of cycloheximide on Ang II-induced sarcomere organization.
Figure 2: Agonist-induced phosphorylation of MLC2v.
Figure 3: Effect of activated MLCK on sarcomere organization in cardiac myocytes.
Figure 4: Role of Ca2+/calmodulin-MLCK pathway and mechanical activity in Ang II-Induced sarcomere organization.
Figure 5: Effect of the activated MLCK on other phenotypes of cardiac hypertrophy.

Similar content being viewed by others

References

  1. Katz, A.M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N. Engl. J. Med. 322, 100 –110 (1990).

    Article  CAS  Google Scholar 

  2. Braunwald, E. in Heart Disease. 4th edn Vol. 1 (ed. Braunwald, E.) 393 (W. B. Saunders, Philadelphia, PA, 1992).

    Google Scholar 

  3. Congestive heart failure in the United States: a new epidemic. National Heart, Lung, and Blood Institute Information Center. http://www.nhlbi.nih.gov/nhlbi/cardio/other/gp/CHF.htm. (1996)

  4. Chien, K.R. et al. Transcriptional regulation during cardiac growth and development . Annu. Rev. Physiol. 55, 77– 95 (1993).

    Article  CAS  Google Scholar 

  5. Sadoshima, J. & Izumo, S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59, 551–571 (1997).

    Article  CAS  Google Scholar 

  6. Epstein, H.F. & Fischman, D.A. Molecular analysis of protein assembly in muscle development. Science 251, 1039–1044 (1991).

    Article  CAS  Google Scholar 

  7. Ridley, A.J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  Google Scholar 

  8. Chihara, K. et al. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J. Biol. Chem. 272, 25121–25127 (1997).

    Article  CAS  Google Scholar 

  9. Aoki, H., Izumo, S. & Sadoshima, J. Angiotensin II activates RhoA in cardiac myocytes — a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ. Res. 82, 666–676 ( 1998).

    Article  CAS  Google Scholar 

  10. Hoshijima, M., Sah, V.P., Wang, Y., Chien, K.R. & Brown, J.H. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase. J. Biol. Chem. 273, 7725– 7730 (1998).

    Article  CAS  Google Scholar 

  11. Sadoshima, J., Jahn, L., Takahashi, T., Kulik, T.J. & Izumo, S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J. Biol. Chem. 267, 10551– 10560 (1992).

    CAS  Google Scholar 

  12. Simpson, P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. J. Clin. Invest. 72 , 732–738 (1983).

    Article  CAS  Google Scholar 

  13. Clerk, A. & Sugden, P.H. Cell stress-induced phosphorylation of ATF2 and c-Jun transcription factors in rat ventricular myocytes. Biochem. J. 325, 801–810 (1997).

    Article  CAS  Google Scholar 

  14. Heacock, C.S. & Bamburg, J.R. The quantitation of G- and F-actin in cultured cells. Anal. Biochem. 135, 22 –36 (1983).

    Article  CAS  Google Scholar 

  15. Perrie, W.T. & Perry, S.V. An electrophoretic study of the low-molecular-weight components of myosin. Biochem. J. 119, 31–38 (1970).

    Article  CAS  Google Scholar 

  16. Sweeney, H.L., Bowman, B.F. & Stull, J.T. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am. J. Physiol. 264 , C1085–1095 (1993).

    Article  Google Scholar 

  17. Hongo, K., White, E. & Orchard, C.H. Effect of stretch on contraction and the Ca2+ transient in ferret ventricular muscles during hypoxia and acidosis . Am. J. Physiol. 269, C690– 697 (1995).

    Article  CAS  Google Scholar 

  18. Zhi, G., Abdullah, S.M. & Stull, J.T. Regulatory segments of Ca2+/calmodulin-dependent protein kinases. J. Biol. Chem. 273, 8951 –8957 (1998).

    Article  CAS  Google Scholar 

  19. Nakanishi, S., Yamada, K., Iwahashi, K., Kuroda, K. & Kase, H. KT5926, a potent and selective inhibitor of myosin light chain kinase. Mol. Pharmacol. 37, 482– 488 (1990).

    CAS  Google Scholar 

  20. Sadoshima, J. & Izumo, S. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy . Circ. Res. 77, 1040–1052 (1995).

    Article  CAS  Google Scholar 

  21. Gallagher, P.J., Herring, B.P. & Stull, J.T. Myosin light chain kinases. J. Muscle. Res. Cell Motil. 18, 1–16 (1997).

    Article  CAS  Google Scholar 

  22. Hu, Z.Y., Gong, Y.S. & Huang, W.L. Interaction of berbamine compound E6 and calmodulin-dependent myosin light chain kinase. Biochem. Pharmacol. 44, 1543–1547 (1992).

    Article  CAS  Google Scholar 

  23. Watanabe, A. & Endoh, M. Relationship between the increase in Ca2+ transient and contractile force induced by angiotensin II in aequorin-loaded rabbit ventricular myocardium. Cardiovasc Res 37, 524–531 ( 1998).

    Article  CAS  Google Scholar 

  24. Blanchard, E.M., Smith, G.L., Allen, D.G. & Alpert, N.R. The effects of 2,3-butanedione monoxime on initial heat, tension, and aequorin light output of ferret papillary muscles. Pflugers Arch. 416, 219–221 (1990).

    Article  CAS  Google Scholar 

  25. Thorburn, A. et al. HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J. Biol. Chem. 268, 2244–2249 (1993).

    CAS  Google Scholar 

  26. Pracyk, J.B. et al. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J. Clin. Invest. 102, 929–937 ( 1998).

    Article  CAS  Google Scholar 

  27. Wang, Y. et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J. Biol. Chem. 273, 2161–2168 (1998).

    Article  CAS  Google Scholar 

  28. Zechner, D., Thuerauf, D.J., Hanford, D.S., McDonough, P.M. & Glembotski, C.C. A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J. Cell Biol. 139, 115–127 (1997).

    Article  CAS  Google Scholar 

  29. Wang, Y. et al. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J. Biol. Chem. 273, 5423– 5426 (1998).

    Article  CAS  Google Scholar 

  30. Sanbe, A. et al. Abnormal cardiac structure and function in mice expressing nonphosphorylatable cardiac regulatory myosin light chain 2. J. Biol. Chem. 274, 21085–21094 (1999).

    Article  CAS  Google Scholar 

  31. Morano, I., Hofmann, F., Zimmer, M. & Ruegg, J.C. The influence of P-light chain phosphorylation by myosin light chain kinase on the calcium sensitivity of chemically skinned heart fibres. FEBS. Lett. 189, 221–224 (1985).

    Article  CAS  Google Scholar 

  32. Sweeney, H.L. & Stull, J.T. Phosphorylation of myosin in permeabilized mammalian cardiac and skeletal muscle cells. Am. J. Physiol. 250, C657–660 (1986).

    Article  CAS  Google Scholar 

  33. Ferrari, M.B., Ribbeck, K., Hagler, D.J. & Spitzer, N.C. A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J. Cell Biol. 141, 1349 –1356 (1998).

    Article  CAS  Google Scholar 

  34. Sweeney, H.L., Yang, Z., Zhi, G., Stull, J.T. & Trybus, K.M. Charge replacement near the phosphorylatable serine of the myosin regulatory light chain mimics aspects of phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 91, 1490– 1494 (1994).

    Article  CAS  Google Scholar 

  35. Small, J.V., Rottner, K. & Kaverina, I. Functional design in the actin cytoskeleton. Curr. Opin. Cell Biol. 11, 54–60 (1999).

    Article  CAS  Google Scholar 

  36. Sadoshima, J., Qiu, Z., Morgan, J.P. & Izumo, S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca2+-dependent signaling . Circ. Res. 76, 1–15 (1995).

    Article  CAS  Google Scholar 

  37. Eckel, J., Gerlach-Eskuchen, E. & Reinauer, H. Alpha-adrenoceptor-mediated increase in cytosolic free calcium in isolated cardiac myocytes. J. Mol. Cell. Cardiol. 23, 617–625 (1991).

    Article  CAS  Google Scholar 

  38. Mebazaa, A. et al. Paracrine effects of endocardial endothelial cells on myocyte contraction mediated via endothelin. Am. J. Physiol. 265, H1841–1846 (1993).

    CAS  Google Scholar 

  39. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 93, 215– 228 (1998).

    Article  CAS  Google Scholar 

  40. Rao, A., Luo, C. & Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707– 747 (1997).

    Article  CAS  Google Scholar 

  41. Gruver, C.L., DeMayo, F., Goldstein, M.A. & Means, A.R. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 133, 376–388 (1993).

    Article  CAS  Google Scholar 

  42. Choukroun, G. et al. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J. Clin. Invest. 102, 1311–1320 (1998).

    Article  CAS  Google Scholar 

  43. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245– 248 (1996).

    Article  CAS  Google Scholar 

  44. Amano, M. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246– 20249 (1996).

    Article  CAS  Google Scholar 

  45. Kureishi, Y. et al. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J. Biol. Chem. 272, 12257–12260 (1997),

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. T. Stull for the plasmid, A. Horowitz, A. Haunstetter, M. Ikebe and G. Zhi for discussions, P. Kang, K Sato, and E.O. Weinberg for experimental help and discussions, and J. Hampe for technical assistance. Supported by NIH grant to S.I. and AHA-Michigan grant to J.S. H.A. was supported by AHA-Michigan and AHA-Massachusetts fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seigo Izumo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, H., Sadoshima, J. & Izumo, S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med 6, 183–188 (2000). https://doi.org/10.1038/72287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing