Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomere dysfunction and evolution of intestinal carcinoma in mice and humans

Abstract

Telomerase activation is a common feature of advanced human cancers1 and facilitates the malignant transformation of cultured human cells2 and in mice3,4. These experimental observations are in accord with the presence of robust telomerase activity in more advanced stages of human colorectal carcinogenesis5,6,7. However, the occurrence of colon carcinomas in telomerase RNA (Terc)-null, p53-mutant mice8 has revealed complex interactions between telomere dynamics, checkpoint responses and carcinogenesis9. We therefore sought to determine whether telomere dysfunction exerts differential effects on cancer initiation versus progression of mouse and human intestinal neoplasia. In successive generations of ApcMin Terc−/− mice10,11, progressive telomere dysfunction led to an increase in initiated lesions (microscopic adenomas), yet a significant decline in the multiplicity and size of macroscopic adenomas. That telomere dysfunction also contributes to human colorectal carcinogenesis is supported by the appearance of anaphase bridges (a correlate of telomere dysfunction) at the adenoma-early carcinoma transition, a transition recognized for marked chromosomal instability12,13,14,15. Together, these data are consistent with a model in which telomere dysfunction promotes the chromosomal instability that drives early carcinogenesis, while telomerase activation restores genomic stability to a level permissive for tumor progression. We propose that early and transient telomere dysfunction is a major mechanism underlying chromosomal instability of human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomere shortening has contrasting effects on the survival of ApcMin mice.
Figure 2: Contrasting effects of telomere shortening on tumor formation in ApcMin mice.
Figure 3: Telomere shortening inhibits progression of intestinal neoplasia.
Figure 4: Degree of telomere dysfunction affects adenoma progression.
Figure 5: Telomere dysfunction peaks at the adenoma-carcinoma transition in human colorectal carcinogenesis.

Similar content being viewed by others

References

  1. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2005 (1994).

    Article  CAS  Google Scholar 

  2. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  Google Scholar 

  3. Greenberg, R.A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 97, 515–525 (1999).

    Article  CAS  Google Scholar 

  4. Gonzalez-Suarez, E., Samper, E., Flores, J.M. & Blasco, M.A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genet . 26, 114–117 (2000).

    Article  CAS  Google Scholar 

  5. Engelhardt, M., Drullinsky, P., Guillem, J. & Moore, MA. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin. Cancer Res . 3, 1931–1941 (1997).

    CAS  PubMed  Google Scholar 

  6. Tang, R., Cheng, A.J., Wang, J.Y. & Wang, T.C. Close correlation between telomerase expression and adenomatous polyp progression in multistep colorectal carcinogenesis. Cancer Res. 58, 4052–4054 (1998).

    CAS  PubMed  Google Scholar 

  7. Chadeneau, C., Hay, K., Hirte, H.W., Gallinger, S. & Bacchetti, S. Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Cancer Res. 55, 2533–2536 (1995).

    CAS  PubMed  Google Scholar 

  8. Artandi, S. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  Google Scholar 

  9. Hanahan, D. Benefits of bad telomeres. Nature 406, 573–574 (2000).

    Article  CAS  Google Scholar 

  10. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  Google Scholar 

  11. Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  Google Scholar 

  12. Young, J. et al. Genomic instability occurs in colorectal carcinomas but not in adenomas. Hum. Mutat. 2, 351–354 (1993).

    Article  CAS  Google Scholar 

  13. Okamoto, M. et al. Loss of constitutional heterozygosity in colon carcinoma from patients with familial polyposis coli. Nature 331, 273–277 (1988).

    Article  CAS  Google Scholar 

  14. Ried, T. et al. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosom. Cancer 15, 234–245 (1996).

    Article  CAS  Google Scholar 

  15. Meijer, G.A. et al. Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation. J. Clin. Pathol. 51, 901–909 (1998).

    Article  CAS  Google Scholar 

  16. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  Google Scholar 

  17. Dietrich, W.F. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  Google Scholar 

  18. Halberg, R.B. et al. Tumorigenesis in the multiple intestinal neoplasia mouse: redundancy of negative regulators and specificity of modifiers. Proc. Natl. Acad. Sci. USA 97, 3461–3466 (2000).

    Article  CAS  Google Scholar 

  19. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  Google Scholar 

  20. Herrera, E. et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18, 2950–2960 (1999).

    Article  CAS  Google Scholar 

  21. Lee, H.W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  CAS  Google Scholar 

  22. Rudolph, K.L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  Google Scholar 

  23. Luongo, C. & Dove, W.F. Somatic genetic events linked to the Apc locus in intestinal adenomas of the Min mouse. Genes Chromosom. Cancer 17, 194–198 (1996).

    Article  CAS  Google Scholar 

  24. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in bloom mice. Nature Genet. 26, 424–429 (2000).

    Article  CAS  Google Scholar 

  25. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  Google Scholar 

  27. Kirk, K.E., Harmon, B.P., Reichardt, I.K., Sedat, J.W. & Blackburn, E.H. Block in anaphase chromosome separation caused by a telomerase template mutation. Science 275, 1478–1481 (1997).

    Article  CAS  Google Scholar 

  28. Rudolph, K.L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R.A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287, 1253–1258 (2000).

    Article  CAS  Google Scholar 

  29. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  Google Scholar 

  30. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    Article  CAS  Google Scholar 

  31. Hastie, N.D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Castrillon and S. Chang for helpful advice regarding the pathological and histological classification of intestinal neoplasia; L. Chin, S. Weiler and R. Greenberg for critical review of the manuscript; and P. Flemming and M. Manns for access to the histology archives of the Medical School Hannover. K.L.R. was supported by Deutsche Forschungsgemeinschaft grant Ru 745/1-1, M.W.B. is supported by a Howard Hughes Medical Institute Physician Postdoctoral fellowship and the work was supported by National Institutes of Health grants to R.A.D., who is an American Cancer Society Research Professor and a Kirsch Foundation Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. DePinho.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, K., Millard, M., Bosenberg, M. et al. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28, 155–159 (2001). https://doi.org/10.1038/88871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing