Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen

Abstract

Respiratory exposure to allergen induces T cell tolerance and protection against the development of airway hyperreactivity and asthma. However, the specific mechanisms by which tolerance is induced by respiratory allergen are not clear. We report here that pulmonary dendritic cells (DCs) from mice exposed to respiratory antigen transiently produced interleukin 10 (IL-10). These phenotypically mature pulmonary DCs, which were B-7hi as well as producing IL-10, stimulated the development of CD4+ T regulatory 1–like cells that also produced high amounts of IL-10. In addition, adoptive transfer of pulmonary DCs from IL-10+/+, but not IL-10−/−, mice exposed to respiratory antigen induced antigen-specific unresponsiveness in recipient mice. These studies show that IL-10 production by DCs is critical for the induction of tolerance, and that phenotypically mature pulmonary DCs mediate tolerance induced by respiratory exposure to antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Administration of i.n. OVA induces T cell unresponsiveness and expression of T cell activation antigens.
Figure 2: Capacity and kinetics of antigen presentation by pulmonary DCs from mice exposed to i.n. OVA.
Figure 3: Phenotypic analysis of DCs from mice exposed to i.n. OVA.
Figure 4: Expression and kinetics of IL-10 in pulmonary DCs.
Figure 5: DCs from IL-10+/+, but not IL-10−/−, mice exposed to i.n. OVA transfer T cell tolerance.
Figure 6: Stimulation of T cells with pulmonary versus mesendric DCs.

Similar content being viewed by others

References

  1. McMenamin, C., Schon-Hegrad, M., Oliver, J., Girn, B. & Holt, P. G. Regulation of IgE responses to inhaled antigens: cellular mechanisms underlying allergic sensitization versus tolerance induction. Int. Arch. Allergy Appl. Immunol. 94, 78–82 (1991).

    Article  CAS  Google Scholar 

  2. McMenamin, C. & Holt, P. G. The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production. J. Exp. Med. 178, 889–899 (1993).

    Article  CAS  Google Scholar 

  3. Melamed, D. & Friedman, A. Direct evidence for anergy in T lymphocytes tolerized by oral administration of ovalbumin. Eur. J. Immunol. 23, 935–942 (1993).

    Article  CAS  Google Scholar 

  4. Chen, Y. et al. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376, 177–180 (1995).

    Article  CAS  Google Scholar 

  5. Holt, P. G., Schon-Hegrad, M. A. & Oliver, J. MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations. J. Exp. Med. 167, 262–274 (1988).

    Article  CAS  Google Scholar 

  6. Holt, P. G., Schon-Hegrad, M. A., Phillips, M. J. & McMenamin, P. G. Ia-positive dendritic cells form a tightly meshed network within the human airway epithelium. Clin. Exp. Allergy 19, 597–601 (1989).

    Article  CAS  Google Scholar 

  7. Pollard, A. M. & Lipscomb, M. F. Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells. J. Exp. Med. 172, 159–167 (1990).

    Article  CAS  Google Scholar 

  8. Lambrecht, B. N. et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551–559 (2000).

    Article  CAS  Google Scholar 

  9. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–239 (1994).

    Article  CAS  Google Scholar 

  10. Tsitoura, D. C., Blumenthal, R. L., Berry, G., Dekruyff, R. H. & Umetsu, D. T. Mechanisms preventing allergen-induced airways hyperreactivity: role of tolerance and immune deviation. J. Allergy Clin. Immunol. 106, 239–246 (2000).

    Article  CAS  Google Scholar 

  11. Tsitoura, D. C., DeKruyff, R. H., Lamb, J. R. & Umetsu, D. T. Intranasal exposure to protein antigen induces immunological tolerance mediated by functionally disabled CD4+ T cells. J. Immunol. 163, 2592–2600 (1999).

    CAS  PubMed  Google Scholar 

  12. Iwasaki, A. & Kelsall, B. L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  Google Scholar 

  13. Wu, L., Li, C. L. & Shortman, K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med. 184, 903–911 (1996).

    Article  CAS  Google Scholar 

  14. Vremec, D. & Shortman, K. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J. Immunol. 159, 565–573 (1997).

    CAS  PubMed  Google Scholar 

  15. Pulendran, B. et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand- treated mice. J. Immunol. 159, 2222–2231 (1997).

    CAS  PubMed  Google Scholar 

  16. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    Article  CAS  Google Scholar 

  17. Sander, B., Andersson, J. & Andersson, U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol. Rev. 119, 65–93 (1991).

    Article  CAS  Google Scholar 

  18. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  Google Scholar 

  19. Lambrecht, B. N., Pauwels, R. A. & Fazekas De St Groth, B. Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J. Immunol. 164, 2937–2946 (2000).

    Article  CAS  Google Scholar 

  20. Xia, W., Pinto, C. E. & Kradin, R. L. The antigen-presenting activities of Ia+ dendritic cells shift dynamically from lung to lymph node after an airway challenge with soluble antigen. J. Exp. Med. 181, 1275–1283 (1995).

    Article  CAS  Google Scholar 

  21. Levin, D., Constant, S., Pasqualini, T., Flavell, R. & Bottomly, K. Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo. J. Immunol. 151, 6742–6750 (1993).

    CAS  PubMed  Google Scholar 

  22. Chang, C. C., Wright, A. & Punnonen, J. Monocyte-derived CD1a+ and CD1a dendritic cell subsets differ in their cytokine production profiles, susceptibilities to transfection, and capacities to direct Th cell differentiation. J. Immunol 165, 3584–3591 (2000).

    Article  CAS  Google Scholar 

  23. de Saint-Vis, B. et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J. Immunol. 160, 1666–1676 (1998).

    CAS  PubMed  Google Scholar 

  24. Khanna, A. et al. Effects of liver-derived dendritic cell progenitors on Th1- and Th2- like cytokine responses in vitro and in vivo. J. Immunol. 164, 1346–1354 (2000).

    Article  CAS  Google Scholar 

  25. Jonuleit, H. et al. Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity. Gene Ther. 7, 249–254 (2000).

    Article  CAS  Google Scholar 

  26. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  Google Scholar 

  27. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  Google Scholar 

  28. McAdam, A. J. et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4(+) T cells. J. Immunol. 165, 5035–5040 (2000).

    Article  CAS  Google Scholar 

  29. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  Google Scholar 

  30. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T–cell proliferation and interleukin-10 secretion. Nature Med. 5, 1365–1369 (1999).

    Article  CAS  Google Scholar 

  31. Wills-Karp, M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17, 255–281 (1999).

    Article  CAS  Google Scholar 

  32. Borish, L. IL-10: evolving concepts. J. Allergy Clin. Immunol. 101, 293–297 (1998).

    Article  CAS  Google Scholar 

  33. John, M. et al. Inhaled corticosteroids increase interleukin-10 but reduce macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, and interferon-γ release from alveolar macrophages in asthma. Am. J. Respir. Crit. Care Med. 157, 256–262 (1998).

    Article  CAS  Google Scholar 

  34. Gutgemann, I., Fahrer, A. M., Altman, J. D., Davis, M. M. & Chien, Y. H. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 8, 667–673. (1998).

    Article  CAS  Google Scholar 

  35. Marrack, P., Shimonkevitz, R., Hannum, C., Haskins, K. & Kappler, J. The major histocompatibility complex-restricted antigen receptor on T cells. IV. An antiidiotypic antibody predicts both antigen and I- specificity. J. Exp. Med. 158, 1635–1646 (1983).

    Article  CAS  Google Scholar 

  36. Maloney, D. G., Kaminski, M. S., Burowski, D., Haimovich, J. & Levy, R. Monoclonal anti-idiotype antibodies against the murine B cell lymphoma 38C13: characterization and use as probes for the biology of the tumor in vivo and in vitro. Hybridoma 4, 191–209 (1985).

    Article  CAS  Google Scholar 

  37. Scheicher, C., Mehlig, M., Zecher, R. & Reske, K. Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor. J. Immunol. Meth. 154, 253–264 (1992).

    Article  CAS  Google Scholar 

  38. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

  39. Stockinger, B. & Hausmann, B. Functional recognition of in vivo processed self antigen. Int. Immunol. 6, 247–254 (1994).

    Article  CAS  Google Scholar 

  40. Seder, R. A., Paul, W. E., Davis, M. M. & Fazekas de St Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098 (1992).

    Article  CAS  Google Scholar 

  41. Macaulay, A. E., DeKruyff, R. H. & Umetsu, D. T. Antigen-primed T cells from B cell-deficient JHD mice fail to provide B cell help. J. Immunol. 160, 1694–1700 (1998).

    CAS  PubMed  Google Scholar 

  42. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Meth. 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  43. Assenmacher, M., Schmitz, J. & Radbruch, A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-γ and in interleukin-4-expressing cells. Eur. J. Immunol. 24, 1097–1101 (1994).

    Article  CAS  Google Scholar 

  44. Reiner, S. L., Zheng, S., Corry, D. B. & Locksley, R. M. Constructing polycompetitor cDNAs for quantitative PCR. J. Immunol. Meth. 165, 37–46 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the NIH Public Health Service (RO1HL62348, AI24571 and AI26322) and the California Lung Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale T. Umetsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari, O., DeKruyff, R. & Umetsu, D. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2, 725–731 (2001). https://doi.org/10.1038/90667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing