Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Reviews

Gastrointestinal hormones, energy balance and bariatric surgery

Abstract

Despite increasing understanding of the changes in gastrointestinal and central neuroendocrine signaling following gastric bypass surgery (GBP) in morbidly obese patients, the mechanisms underlying weight loss and weight loss maintenance are not completely understood. Changes in energy expenditure are increasingly recognized as an important factor contributing to weight loss and metabolic effects in patients following GBP surgery. Experimental data regarding changes in energy balance following metabolic surgery in animal models suggest increased energy expenditure postoperatively as an important factor in the process of weight loss. However, the underlying neuroendocrine mechanisms are not well understood, and data regarding changes in energy expenditure in humans after GBP are inconsistent because of heterogenic patient populations and variable techniques. Nevertheless, a growing body of knowledge and understanding of the complex entero–neurohumoral interaction with its consequences in appetite, satiety and energy expenditure will help reveal the mechanisms of weight loss and weight loss maintenance following GBP surgery. Here we review how gastrointestinal hormones potentially regulate energy balance, and summarize current available experimental and clinical data on energy expenditure following obesity surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Visscher TL, Seidell JC . The public health impact of obesity. Annu Rev Public Health 2001; 22: 355–375.

    Article  CAS  Google Scholar 

  2. Allison DB, Saunders SE . Obesity in North America. An overview. Med Clin North Am 2000; 84: 305–332, v.

    Article  CAS  Google Scholar 

  3. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM . Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 2004; 291: 2847–2850.

    Article  CAS  Google Scholar 

  4. Kaplan LM . Pharmacological therapies for obesity. Gastroenterol Clin North Am 2005; 34: 91–104.

    Article  Google Scholar 

  5. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD et al. Long-term mortality after gastric bypass surgery. N Engl J Med 2007; 357: 753–761.

    Article  CAS  Google Scholar 

  6. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741–752.

    Article  Google Scholar 

  7. Buchwald H, Oien DM . Metabolic/bariatric surgery Worldwide 2008. Obes Surg 2009; 19: 1605–1611.

    Article  Google Scholar 

  8. Greenway FL . Surgery for obesity. Endocrinol Metab Clin North Am 1996; 25: 1005–1027.

    Article  CAS  Google Scholar 

  9. Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ . Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg 2006; 93: 210–215.

    Article  CAS  Google Scholar 

  10. Burge JC, Schaumburg JZ, Choban PS, DiSilvestro RA, Flancbaum L . Changes in patients’ taste acuity after Roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc 1995; 95: 666–670.

    Article  CAS  Google Scholar 

  11. Scruggs DM, Buffington C, Cowan Jr GS . Taste acuity of the morbidly obese before and after gastric bypass surgery. Obes Surg 1994; 4: 24–28.

    Article  CAS  Google Scholar 

  12. Tichansky DS, Boughter Jr JD, Madan AK . Taste change after laparoscopic Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding. Surg Obes Relat Dis 2006; 2: 440–444.

    Article  Google Scholar 

  13. Olbers T, Bjorkman S, Lindroos A, Maleckas A, Lonn L, Sjostrom L et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg 2006; 244: 715–722.

    Article  Google Scholar 

  14. Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab 2005; 90: 359–365.

    Article  CAS  Google Scholar 

  15. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006; 243: 108–114.

    Article  Google Scholar 

  16. le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 2007; 246: 780–785.

    Article  Google Scholar 

  17. Murphy KG, Bloom SR . Gut hormones and the regulation of energy homeostasis. Nature 2006; 444: 854–859.

    Article  CAS  Google Scholar 

  18. Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low MJ . The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 2001; 25 (Suppl 5): S63–S67.

    Article  CAS  Google Scholar 

  19. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    Article  CAS  Google Scholar 

  20. Balasubramaniam A, Mullins DE, Lin S, Zhai W, Tao Z, Dhawan VC et al. Neuropeptide Y (NPY) Y4 receptor selective agonists based on NPY(32-36): development of an anorectic Y4 receptor selective agonist with picomolar affinity. J Med Chem 2006; 49: 2661–2665.

    Article  CAS  Google Scholar 

  21. Larsen PJ, Kristensen P . The neuropeptide Y (Y4) receptor is highly expressed in neurones of the rat dorsal vagal complex. Brain Res Mol Brain Res 1997; 48: 1–6.

    Article  CAS  Google Scholar 

  22. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002; 418: 650–654.

    Article  CAS  Google Scholar 

  23. Batterham RL, Cohen MA, Ellis SM, le Roux CW, Withers DJ, Frost GS et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 2003; 349: 941–948.

    Article  CAS  Google Scholar 

  24. Badman MK, Flier JS . The gut and energy balance: visceral allies in the obesity wars. Science 2005; 307: 1909–1914.

    Article  CAS  Google Scholar 

  25. Guo Y, Ma L, Enriori PJ, Koska J, Franks PW, Brookshire T et al. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity (Silver Spring) 2006; 14: 1562–1570.

    Article  CAS  Google Scholar 

  26. Doucet E, Laviolette M, Imbeault P, Strychar I, Rabasa-Lhoret R, Prud’homme D . Total peptide YY is a correlate of postprandial energy expenditure but not of appetite or energy intake in healthy women. Metabolism 2008; 57: 1458–1464.

    Article  CAS  Google Scholar 

  27. Adams SH, Lei C, Jodka CM, Nikoulina SE, Hoyt JA, Gedulin B et al. PYY[3-36] administration decreases the respiratory quotient and reduces adiposity in diet-induced obese mice. J Nutr 2006; 136: 195–201.

    Article  CAS  Google Scholar 

  28. Dakin CL, Small CJ, Park AJ, Seth A, Ghatei MA, Bloom SR . Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am J Physiol Endocrinol Metab 2002; 283: E1173–E1177.

    Article  CAS  Google Scholar 

  29. Sowden GL, Drucker DJ, Weinshenker D, Swoap SJ . Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon-like peptide-1 receptor. Am J Physiol Regul Integr Comp Physiol 2007; 292: R962–R970.

    Article  CAS  Google Scholar 

  30. Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 2005; 54: 2390–2395.

    Article  CAS  Google Scholar 

  31. Asakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 2003; 124: 1325–1336.

    Article  CAS  Google Scholar 

  32. Lutz TA . Amylinergic control of food intake. Physiol Behav 2006; 89: 465–471.

    Article  CAS  Google Scholar 

  33. Osto M, Wielinga PY, Alder B, Walser N, Lutz TA . Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol Behav 2007; 91: 566–572.

    Article  CAS  Google Scholar 

  34. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002; 346: 1623–1630.

    Article  Google Scholar 

  35. Bueter M, Lowenstein C, Olbers T, Wang M, Cluny NL, Bloom SR et al. Gastric bypass increases energy expenditure in rats. Gastroenterology 2010; 138: 1845–1853.

    Article  Google Scholar 

  36. Bueter M, Lowenstein C, Ashrafian H, Hillebrand J, Bloom SR, Olbers T et al. Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass. Obes Surg 2010; 20: 616–622.

    Article  Google Scholar 

  37. Nadreau E, Baraboi ED, Samson P, Blouin A, Hould FS, Marceau P et al. Effects of the biliopancreatic diversion on energy balance in the rat. Int J Obes (Lond) 2006; 30: 419–429.

    Article  CAS  Google Scholar 

  38. le Roux CW, Borg C, Wallis K, Vincent RP, Bueter M, Goodlad R et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg 2010; 252: 50–56.

    Article  Google Scholar 

  39. Furnes MW, Tommeras K, Arum CJ, Zhao CM, Chen D . Gastric bypass surgery causes body weight loss without reducing food intake in rats. Obes Surg 2008; 18: 415–422.

    Article  Google Scholar 

  40. Guijarro A, Suzuki S, Chen C, Kirchner H, Middleton FA, Nadtochiy S et al. Characterization of weight loss and weight regain mechanisms after Roux-en-Y gastric bypass in rats. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1474–R1489.

    Article  CAS  Google Scholar 

  41. Stylopoulos N, Hoppin AG, Kaplan LM . Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity (Silver Spring) 2009; 17: 1839–1847.

    Article  Google Scholar 

  42. Shibata H, Bukowiecki LJ . Regulatory alterations of daily energy expenditure induced by fasting or overfeeding in unrestrained rats. J Appl Physiol 1987; 63: 465–470.

    Article  CAS  Google Scholar 

  43. Flier JS . Clinical review 94: what's in a name? In search of leptin's physiologic role. J Clin Endocrinol Metab 1998; 83: 1407–1413.

    CAS  Google Scholar 

  44. Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud HR . Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology 2010; 151: 1588–1597.

    Article  CAS  Google Scholar 

  45. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 2006; 4: 223–233.

    Article  CAS  Google Scholar 

  46. de Castro Cesar M, de Lima Montebelo MI, Rasera Jr I, de Oliveira Jr AV, Gomes Gonelli PR, Aparecida Cardoso G . Effects of Roux-en-Y gastric bypass on resting energy expenditure in women. Obes Surg 2008; 18: 1376–1380.

    Article  Google Scholar 

  47. Carrasco F, Papapietro K, Csendes A, Salazar G, Echenique C, Lisboa C et al. Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass. Obes Surg 2007; 17: 608–616.

    Article  Google Scholar 

  48. Das SK, Roberts SB, McCrory MA, Hsu LK, Shikora SA, Kehayias JJ et al. Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery. Am J Clin Nutr 2003; 78: 22–30.

    Article  CAS  Google Scholar 

  49. Flancbaum L, Choban PS, Bradley LR, Burge JC . Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery 1997; 122: 943–949.

    Article  CAS  Google Scholar 

  50. Apfelbaum M, Bostsarron J, Lacatis D . Effect of caloric restriction and excessive caloric intake on energy expenditure. Am J Clin Nutr 1971; 24: 1405–1409.

    Article  CAS  Google Scholar 

  51. Jequier E, Schutz Y . Long-term measurements of energy expenditure in humans using a respiration chamber. Am J Clin Nutr 1983; 38: 989–998.

    Article  CAS  Google Scholar 

  52. Justino SR, Dias MC, Maculevicius J, Colugnati FA, Sing TC, Halpern A et al. Basal energy expenditure and diet- induced modifications to thermogenesis in short bowel syndrome. Clin Nutr 2005; 24: 38–46.

    Article  Google Scholar 

  53. Luz J, Griggio MA, Fagundes DJ, Araujo RM, Marcondes W . Oxygen consumption of rats with broad intestinal resection. Braz J Med Biol Res 2000; 33: 1497–1500.

    Article  CAS  Google Scholar 

  54. Stefater MA, Perez-Tilve D, Chambers AP, Wilson-Perez HE, Sandoval DA, Berger J et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology 2010; 138: 2426–2436.

    Article  CAS  Google Scholar 

  55. Murray ME, Franks G, Gazet J, Grundy A . Radiologic demonstration of small bowel adaptation following modified scopinaro procedure for morbid obesity. Obes Surg 1993; 3: 165–168.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C W le Roux.

Ethics declarations

Competing interests

CW le Roux has received consulting fees from Ethicon and Allergan. He has also received grant support from Ethicon and National Institute of Health Research. M Bueter declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueter, M., le Roux, C. Gastrointestinal hormones, energy balance and bariatric surgery. Int J Obes 35 (Suppl 3), S35–S39 (2011). https://doi.org/10.1038/ijo.2011.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.146

Keywords

This article is cited by

Search

Quick links