Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche

Abstract

The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of about six cycling Lgr5+ stem cells at the bottoms of small-intestinal crypts1. Here we describe the establishment of long-term culture conditions under which single crypts undergo multiple crypt fission events, while simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5+ stem cells can also initiate these crypt-villus organoids. Tracing experiments indicate that the Lgr5+ stem-cell hierarchy is maintained in organoids. We conclude that intestinal crypt-villus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of intestinal crypt culture system.
Figure 2: Single Lgr5 + cells generate crypt-villus structures.
Figure 3: Colony-forming efficiency of single cells sorted in individual wells.
Figure 4: Composition of single stem cell-derived organoids.

References

  1. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5 . Nature 449, 1003–1007 (2007)

    Article  ADS  CAS  Google Scholar 

  2. Bjerknes, M. & Cheng, H. Intestinal epithelial stem cells and progenitors. Methods Enzymol. 419, 337–383 (2006)

    Article  CAS  Google Scholar 

  3. Barker, N., van de Wetering, M. & Clevers, H. The intestinal stem cell. Genes Dev. 22, 1856–1864 (2008)

    Article  CAS  Google Scholar 

  4. Evans, G. S., Flint, N., Somers, A. S., Eyden, B. & Potten, C. S. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 101, 219–231 (1992)

    PubMed  Google Scholar 

  5. Whitehead, R. H., Demmler, K., Rockman, S. P. & Watson, N. K. Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans. Gastroenterology 117, 858–865 (1999)

    Article  CAS  Google Scholar 

  6. Fukamachi, H. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture. J. Cell Sci. 103, 511–519 (1992)

    PubMed  Google Scholar 

  7. Perreault, N. & Jean-Francois, B. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp. Cell Res. 224, 354–364 (1996)

    Article  CAS  Google Scholar 

  8. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998)

    Article  CAS  Google Scholar 

  9. Pinto, D., Gregorieff, A., Begthel, H. & Clevers, H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 17, 1709–1713 (2003)

    Article  CAS  Google Scholar 

  10. Kuhnert, F. et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc. Natl Acad. Sci. USA 101, 266–271 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Kim, K. A. et al. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309, 1256–1259 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Dignass, A. U. & Sturm, A. Peptide growth factors in the intestine. Eur. J. Gastroenterol. Hepatol. 13, 763–770 (2001)

    Article  CAS  Google Scholar 

  13. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Hofmann, C. et al. Cell–cell contacts prevent anoikis in primary human colonic epithelial cells. Gastroenterology 132, 587–600 (2007)

    Article  CAS  Google Scholar 

  15. Sasaki, T., Giltay, R., Talts, U., Timpl, R. & Talts, J. F. Expression and distribution of laminin α1 and α2 chains in embryonic and adult mouse tissues: an immunochemical approach. Exp. Cell Res. 275, 185–199 (2002)

    Article  CAS  Google Scholar 

  16. Stingl, J., Eaves, C. J., Zandieh, I. & Emerman, J. T. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat. 67, 93–109 (2001)

    Article  CAS  Google Scholar 

  17. St Clair, W. H. & Osborne, J. W. Crypt fission and crypt number in the small and large bowel of postnatal rats. Cell Tissue Kinet. 18, 255–262 (1985)

    CAS  PubMed  Google Scholar 

  18. Batlle, E. et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002)

    Article  CAS  Google Scholar 

  19. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001)

    Article  CAS  Google Scholar 

  20. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  Google Scholar 

  21. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnol. 25, 681–686 (2007)

    Article  CAS  Google Scholar 

  23. van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Li, L. et al. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8, 43–55 (1998)

    Article  CAS  Google Scholar 

  25. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am. J. Anat. 141, 461–479 (1974)

    Article  CAS  Google Scholar 

  26. Powell, D. W. et al. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am. J. Physiol. 277, C183–C201 (1999)

    Article  CAS  Google Scholar 

  27. Yen, T. H. & Wright, N. A. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2, 203–212 (2006)

    Article  CAS  Google Scholar 

  28. Kedinger, M. et al. Intestinal epithelial–mesenchymal cell interactions. Ann. NY Acad. Sci. 859, 1–17 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414, 98–104 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Li, L. & Xie, T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 21, 605–631 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. van den Born, J. Korving, H. Begthel and S. van den Brink for technical assistance, and N. Ong and M. van den Bergh Weerman for technical assistance with electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Clevers.

Ethics declarations

Competing interests

H.C. is an inventor on several patents involving the culture system in this paper, as is T.S.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-9 with Legends. (PDF 1698 kb)

Supplementary Information

This file contains Supplementary Table 1 and Legends for Supplementary Table 1 and Movies 1-2. (PDF 367 kb)

Supplementary Movie 1

This movie shoes differential interference contrast microscopy movie of the first three days of culture of a single crypt. (MOV 4383 kb)

Supplementary Movie 2

This Movie shows a 7-day-old organoid derived from an Lgr5-EGFP-ires CreERT2/Rosa26-YFP crypt (see file s2 for full Legend). (MOV 3445 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Vries, R., Snippert, H. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009). https://doi.org/10.1038/nature07935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07935

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing