Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mad-related genes in the human

Abstract

Resistance to the growth inhibitory effects of TGF-β is common in human cancers1,2. However, the mechanism(s) by which tumour cells become resistant to TGF-β are generally unknown. We have identified five novel human genes related to a Drosophila gene called Mad which is thought to transduce signals from TGF-β family members3–5. One of these genes was found to be somatically mutated in two of eighteen colorectal cancers, and three of the other genes were located at chromosomal positions previously suspected to harbor tumour suppressor genes. These data suggest that this gene family may prove to be important in the suppression of neoplasia, imparting the growth inhibitory effects of TGF-β-like ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fynan, T.M. & Reiss, M. Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit. Rev. Oncog. 4, 493–540 (1993).

    CAS  PubMed  Google Scholar 

  2. Brattain, M.G., Howell, G., Sun, L.Z. & Willson, J.K., Growth factor balance and tumor progression. Curr. Opin. Oncol. 6, 77–81 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Hursh, D.A., Padgett, R.W. & Gelbart, W.M. Cross regulation of decapentaplegic and Ultrabithorax transcription in the embryonic visceral mesoderm of Drosophila . Development 117, 1211–1222 (1993).

    CAS  PubMed  Google Scholar 

  4. Sekelsky, J.J., Newfeld, S.J., Raftery, L.A., Chartoff, E.H. & Gelbart, W.M. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347–1358 (1995).

    Google Scholar 

  5. Savage, C. et al. Caenorhabditis elegans genes Sma2, Sma-3, and Sma-4 define a conserved family of transforming growth factor beta pathway components. Proc. Natl. Acad. Sci. USA 93, 790–794 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kingsley, D.M. TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes. Dev. 8, 133–146 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Roberts, A.B. & Sporn, M.B. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8, 1–9 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Satterwhite, D.J. & Moses, H.L. Mechanisms of transforming growth factor-beta 1 - induced cell cycle arrest. Inv. Metast. 14, 309–318 (1994).

    CAS  Google Scholar 

  9. Massague, J. & Polyak, K. Mammalian antiproliferative signals and their targets. Curr. Opin.Genet. Dev. 5, 91–96 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Hahn, S.A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Korenberg, J.R., Chen, X.N., Adams, M.D. & Venter, J.C. Toward a cDNA Map Of the Human Genome. Genomics 29, 364–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Fearon, E.R. et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247, 49–56 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Thiagalingam, S. et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nature Genet. 13, 343–346 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Rojas, K., Silverman, G.A., Hudson, J.R., Jr., & Overhauser, J. Integration of the 1993-94 Genethon genetic linkage map for chromosome 18 with the physical map using a somatic cell hybrid mapping panel. Genomics. 25, 329–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Schutte, M. et al. DPC4 gene in various tumor types. Cancer Res. 56, 2527–2530 (1996).

    CAS  PubMed  Google Scholar 

  16. Ogasawara, S. et al. Common deleted region on the long arm of chromosome 5 in esophageal carcinoma. Gastroenterol. 110, 52–57 (1996).

    Article  CAS  Google Scholar 

  17. Wieland, I. et al. Allelic deletion mapping on chromosome 5 in human lung carcinomas. Oncogene. 12, 97–102 (1996).

    CAS  PubMed  Google Scholar 

  18. Wick, W. Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene 12, 973–978 (1996).

    CAS  PubMed  Google Scholar 

  19. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J., Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Hillier, L. Generation and preliminary analysis of over 200,000 human expressed sequence tags. Nature (in the press).

  21. Hudson, T.J. . et al. An STS-based map of the human genome. Science 270, 1945–1954 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Powell, S.M. et al. Molecular diagnosis of familial adenomatous polyposis. N. Engl. J. Med. 329, 1982–1987 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Leach, F.S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Schuler, G.D., Altschul, S.F. & Lipman, D.J. A workbench for multiple alignment construction and analysis. Proteins. 9, 180–190 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Houlgatte, R. et al. The Genexpress Index - a resource for gene discovery and the genie map of the human genome. Genome Res. 5, 272–304 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riggins, G., Thiagalingam, S., Rozenblum, E. et al. Mad-related genes in the human. Nat Genet 13, 347–349 (1996). https://doi.org/10.1038/ng0796-347

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing