Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis

Abstract

Individuals with hereditary hemochromatosis suffer from systemic iron overload due to duodenal hyperabsorption1,2. Most cases arise from a founder mutation in HFE (845G→A; ref. 2) that results in the amino-acid substitution C282Y and prevents the association of HFE with β2-microglobulin. Mice homozygous with respect to a null allele of Hfe (Hfe−/−) or homozygous with respect to the orthologous 882G→A mutation (Hfe845A/845A) develop iron overload that recapitulates hereditary hemochromatosis in humans, confirming that hereditary hemochromatosis arises from loss of HFE function3. Much work has focused on an exclusive role for the intestine in hereditary hemochromatosis. HFE deficiency in intestinal crypt cells is thought to cause intestinal iron deficiency and greater expression of iron transporters such as SLC11A2 (also called DMT1, DCT1 and NRAMP2) and SLC11A3 (also called IREG1, ferroportin and MTP1; ref. 3). Published data on the expression of these transporters in the duodenum of HFE-deficient mice and humans are contradictory4,5,6,7,8. In this report, we used a custom microarray to assay changes in duodenal and hepatic gene expression in Hfe-deficient mice. We found unexpected alterations in the expression of Slc39a1 (mouse ortholog of SLC11A3) and Cybrd1, which encode key iron transport proteins, and Hamp (hepcidin antimicrobial peptide), a hepatic regulator of iron transport. We propose that inappropriate regulatory cues from the liver underlie greater duodenal iron absorption, possibly involving the ferric reductase Cybrd1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of duodenal regulatory responses in mouse models of hereditary hemochromatosis.
Figure 2: Summary of the regulatory responses of the liver in mouse models of hereditary hemochromatosis.
Figure 3: Summary of the liver regulatory responses of wild-type and Hfe-deficient mice challenged by injection of Fe-dextran.
Figure 4: Northern-blot analysis and quantitative RT–PCR analysis.

Similar content being viewed by others

References

  1. Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Feder, J.N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Fleming, R.E. & Sly, W.S. Mechanisms of iron accumulation in hereditary hemochromatosis. Annu. Rev. Physiol. 64, 663–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Canonne-Hergaux, F. et al. Expression of the DMT1 (NRAMP2/DCT1) iron transporter in mice with genetic iron overload disorders. Blood 97, 1138–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Dupic, F. et al. Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains. Gastroenterology 122, 745–751 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Fleming, R.E. et al. Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT1. Proc. Natl. Acad. Sci. USA 96, 3143–3148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rolfs, A. et al. Intestinal expression of genes involved in iron absorption in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 282, 598–607 (2002).

    Article  Google Scholar 

  8. Zoller, H. et al. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 120, 1412–1419 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Muckenthaler, M. et al. Relationships and distinctions in iron regulatory networks responding to interrelated signals. Blood 101, 3690–3698 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Thompson, K. et al. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J. Neurosci. Res. 71, 46–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Ajioka, R.S., Levy, J.E., Andrews, N.C. & Kushner, J.P. Regulation of iron absorption in Hfe mutant mice. Blood 100, 1465–1469 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Trinder, D., Oates, P.S., Thomas, C., Sadleir, J. & Morgan, E.H. Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46, 270–276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, F. et al. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J. Biol. Chem. 277, 39786–39791 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. McKie, A.T. et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Simpson, R.J. et al. Duodenal mucosal reductase in wild-type and Hfe knockout mice on iron adequate, iron deficient, and iron rich feeding. Gut 52, 510–513 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trinder, D., Olynyk, J.K., Sly, W.S. & Morgan, E.H. Iron uptake from plasma transferrin by the duodenum is impaired in the Hfe knockout mouse. Proc. Natl. Acad. Sci. USA 99, 5622–5626 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. McKie, A.T. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Eisenstein, R.S. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu. Rev. Nutr. 20, 627–662 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida, T. & Migita, C.T. Mechanism of heme degradation by heme oxygenase. J. Inorg. Biochem. 82, 33–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Ferris, C.D. et al. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat. Cell Biol. 1, 152–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Fleming, R.E. et al. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc. Natl. Acad. Sci. USA 97, 2214–2219 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pigeon, C. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276, 7811–7819 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ahmad, K.A. et al. Decreased liver hepcidin expression in the hfe knockout mouse. Blood Cells Mol. Dis. 29, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Bridle, K.R. et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361, 669–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Timchenko, L.T., Iakova, P., Welm, A.L., Cai, Z.J. & Timchenko, N.A. Calreticulin interacts with C/EBPα and C/EBPβ mRNAs and represses translation of C/EBP proteins. Mol. Cell. Biol. 22, 7242–7257 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Courselaud, B. et al. C/EBPα regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. J. Biol. Chem. 277, 41163–41170 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Nicolas, G. et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl. Acad. Sci. USA 98, 8780–8785 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levy, J.E., Montross, L.K., Cohen, D.E., Fleming, M.D. & Andrews, N.C. The C282Y mutation causing hereditary hemochromatosis does not produce a null allele. Blood 94, 9–11 (1999).

    CAS  PubMed  Google Scholar 

  30. Richter, A. et al. Comparison of fluorescent tag DNA labeling methods used for expression analysis by DNA microarrays. Biotechniques 33, 620–628, 630 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Richter and W. Ansorge for support in setting up the IronChip microarray platform; V. Benes, R. Carmouche and M. Benesova for maintaining it; numerous colleagues who contributed cDNA clones; and U. Ringeisen for support with art work. We acknowledge the Resource Center and Primary Database for the supply of cDNA clones. M.W.H. acknowledges funds from the Gottfried Wilhelm Leibniz Prize. N.C.A. is an Associate Investigator of the Howard Hughes Medical Institute. C.N.R. was funded by a training grant from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nancy C. Andrews or Matthias W. Hentze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muckenthaler, M., Roy, C., Custodio, Á. et al. Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nat Genet 34, 102–107 (2003). https://doi.org/10.1038/ng1152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing