Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous and carcinogen–induced tumorigenesis in p53–deficient mice

Abstract

Using gene targeting techniques, mice that have been generated with two germ–line p53 null alleles (homozygotes) develop normally but are highly susceptible to early onset spontaneous tumours. Here, we show that mice with a single null p53 allele (heterozygotes) produced in the same way are also susceptible to spontaneous tumours, but with a delayed onset compared to homozygotes. The most frequent tumour type in homozygotes was malignant lymphoma; in heterozygotes, osteosarcomas and soft tissue sarcomas predominated. Heterozygous mice treated with a liver carcinogen, dimethylnitrosamine, showed a decreased survival time in comparison to treated wild type mice, suggesting that the p53–deficient mice may be useful for some in vivo carcinogenesis assays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levine, A.J., Momand, J. & Finlay, C.A. The p53 tumour suppressor gene. Nature 351, 453–456 (1991).

    Article  CAS  Google Scholar 

  2. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  Google Scholar 

  3. Caron de Fromentel, C. & Soussi, T. TP53 tumor suppressor gene: A model for investigating human mutagenesis. Genes, Chrom. Cancer 4, 1–15 (1992).

    Article  CAS  Google Scholar 

  4. Chang, F., Syrjanen, S., Kurvinen, K. & Syrjanen, K. The p53 tumor suppressor gene as a common cellular target in human carcinogenesis. Am. j. Gastroenterol. 88, 174–186 (1993).

    CAS  PubMed  Google Scholar 

  5. Nigro, J.M. et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705–708 (1989).

    Article  CAS  Google Scholar 

  6. Masuda, H., Miller, C., Koeffler, H.P., Battifora, H., Cline, M.J. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. natn. Acad. Sci. U.S.A. 84, 7716–7719 (1987).

    Article  CAS  Google Scholar 

  7. Saylors, R.L. et al. Infrequent p53 gene mutations in medulloblastomas. Cancer Res. 51, 4721–4723 (1991).

    PubMed  Google Scholar 

  8. Preudhomme, C. et al. Rare occurrence of p53 gene mutations in multiple myeloma. Br. J. Haematol. 81, 440 (1992).

    Article  CAS  Google Scholar 

  9. Tsushita, K., Hotta, T., Ichikawa, A. & Saito, H. Mutation of p53 gene does not play a critical role in myelodysplastic syndrome and its transformation to acute leukaemia. Br. J. Haematol. 81, 456 (1992).

    Article  CAS  Google Scholar 

  10. Moll, U., Riou, G. & Levine, A.J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. natn. Acad. Sci. U.S.A. 89, 7262–7266 (1992).

    Article  CAS  Google Scholar 

  11. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  Google Scholar 

  12. Srivastava, S., Zou, Z., Pirollo, K., Blattner, W. & Chang, E. Germ-line transmission of a mutated p53 gene in a cancerprone family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  Google Scholar 

  13. Toguchida, J. et al. Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. New Engl. J. Med. 326, 1301–1308 (1992).

    Article  CAS  Google Scholar 

  14. Malkin, D. et al. Germline mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. New Engl. J. Med. 326, 1309–1315 (1992).

    Article  CAS  Google Scholar 

  15. Ben-David, Y. & Bernstein, A. Friend virus-induced erythroleukemia and the multistage nature of cancer. Cell 66, 831–834 (1991).

    Article  CAS  Google Scholar 

  16. Lavigueur, A. et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Molec. cell. Biol. 9, 3982–3991 (1989).

    Article  CAS  Google Scholar 

  17. Milner, J. & Medcalf, E.A. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65, 765–774 (1991).

    Article  CAS  Google Scholar 

  18. Kern, S. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  Google Scholar 

  19. Farmer, G. et al. Wild-type p53 activates transcription in vitro. Nature 358, 83–86 (1992).

    Article  CAS  Google Scholar 

  20. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  21. Clapp, N.K., Craig, A.W. & Toya, R.E. Sr. Pulmonary and hepatic oncogenesis during treatment of male RF mice with dimethylnitrosamine. J. natn Cancer Inst. 41, 1213–1221 (1968).

    CAS  Google Scholar 

  22. Livingstone, L. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    Article  CAS  Google Scholar 

  23. Yin, Y., Tainsky, M.A., Bischoff, F.Z., Strong, L.C. & Wahl, G.M. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70, 937–948 (1992).

    Article  CAS  Google Scholar 

  24. Kastan, M. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  25. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis. Nature 362, 847–849 (1993).

    Article  CAS  Google Scholar 

  26. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  Google Scholar 

  27. Triche, T.J. Unique features of childhood cancer. In Cancer Medicine, 3rd edn, (eds Holland, J.F. et al.) 2144–2152 (Lea & Febiger, Malvern, Philadelphia, 1993).

    Google Scholar 

  28. Miller, R.W. & Dalager, B. U.S. childhood deaths by cell type. J. Pediat. 85, 664 (1974).

    Article  CAS  Google Scholar 

  29. Parkin, D.M. et al. Results from Contributing Centers—List of Tables. In International Incidence of Childhood Cancer, No. 87, 101–107 (Oxford University Press, 1988).

    Google Scholar 

  30. Hansen, M.F. & Cavenee, W.K. Genetics of cancer predisposition. Cancer Res. 47, 5518–5527 (1987).

    CAS  PubMed  Google Scholar 

  31. Fournier, P. Biotransformation of dimethylnitrosamine. J. Toxicol. Clin. Exp. 10, 283–296 (1990).

    CAS  PubMed  Google Scholar 

  32. Pritchard, D.J. & Butler, W.H. Apoptosis—The mechanism of cell death in dimethylnitrosamine-induced hepatotoxicity. J. Pathol. 158, 253–260 (1989).

    Article  CAS  Google Scholar 

  33. Kemp, C., Donehower, L.A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).

    Article  CAS  Google Scholar 

  34. Burns, P.A. et al. Loss of heterozygosity and mutational alterations of the p53 gene in skin tumours of interspecific hybrid mice. Oncogene 6, 2363–2369 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, M., McArthur, M., Montgomery, C. et al. Spontaneous and carcinogen–induced tumorigenesis in p53–deficient mice. Nat Genet 5, 225–229 (1993). https://doi.org/10.1038/ng1193-225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1193-225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing