Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Δ716 Cdx2+/− compound mutant mice

Abstract

The mammalian homeobox transcription factor CDX2 has key roles in intestinal development and differentiation. Heterozygous Cdx2 mice develop one or two benign hamartomas in the proximal colon, whereas heterozygous ApcΔ716 mice develop numerous adenomatous polyps, mostly in the small intestine. Here we show that the colonic polyp number is about six times higher in Apc+/Δ716 Cdx2+/− compound mutant mice. Levels of both APC and CDX2 were significantly lower in the distal colon, which caused high anaphase bridge index (ABI) associated with a higher frequency of loss of heterozygosity (LOH) at Apc. In cultured rat intestinal epithelial and human colon cancer cell lines, suppression of CDX2 by antisense RNA caused marked increases in ABI and chromosomal aberrations. This was mediated by stimulation of the mTOR pathway, causing translational deregulation and G1-S acceleration, associated with low levels of p27 and activation of cyclin E–Cdk2. We obtained similar results in the colonic mucosa of Apc+/Δ716 Cdx2+/− compound mutant mice. Forced activation of mTOR through upstream regulator Akt also increased ABI in colon cancer cells. High ABI in all cell lines was suppressed by mTOR inhibitors LY294002 and rapamycin. These results suggest that reduced expression of CDX2 is important in colon tumorigenesis through mTOR-mediated chromosomal instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colonic polyps in Apc+/Δ716 Cdx2+/− mice.
Figure 2: Colonic expression of Cdx2 and Apc in ApcΔ716, Apc+/Δ716 Cdx2+/− and Cdx2+/− mice.
Figure 3: Anaphase cell analysis in ApcΔ716, Apc+/Δ716 Cdx2+/− and Cdx2+/− mice.
Figure 4: Anaphase bridges in cultured cells induced by suppression of CDX2 expression.
Figure 5: G1-S progression in low CDX2 clones.
Figure 6: Protein analyses in CDX2 DLD-1 clones and colonic mucosa and colonic cell kinetics in vivo.
Figure 7: Effects of kinase inhibitors on ABI in low CDX2 DLD-1 cells.

Similar content being viewed by others

References

  1. Mlodzik, M. & Gehring, W.J. Expression of the caudal gene in the germ line of Drosophila: formation of an RNA and protein gradient during early embryogenesis. Cell 48, 465–478 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Beck, F., Erler, T., Russell, A. & James, R. Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev. Dyn. 204, 219–227 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Traber, P.G. & Silberg, D.G. Intestine-specific gene transcription. Annu. Rev. Physiol. 58, 275–297 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Lorentz, O. et al. Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J. Cell Biol. 139, 1553–1565 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chawengsaksophak, K., James, R., Hammond, V.E., Kontgen, F. & Beck, F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386, 84–87 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Tamai, Y. et al. Colonic hamartoma development by anomalous duplication in Cdx2 knockout mice. Cancer Res. 59, 2965–2970 (1999).

    CAS  PubMed  Google Scholar 

  7. Ee, H.C., Erler, T., Bhathal, P.S., Young, G.P. & James, R.J. Cdx-2 homeodomain protein expression in human and rat colorectal adenoma and carcinoma. Am. J. Pathol. 147, 586–592 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mallo, G.V. et al. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. Int. J. Cancer 74, 35–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. da Costa, L.T. et al. CDX2 is mutated in a colorectal cancer with normal APC/β-catenin signaling. Oncogene 18, 5010–5014 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hinoi, T. et al. Loss of CDX2 expression and microsatellite instability are prominent features of large cell minimally differentiated carcinomas of the colon. Am. J. Pathol. 159, 2239–2248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oshima, M. et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncation Apc gene. Proc. Natl. Acad. Sci. USA 92, 4482–4486 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oshima, H., Oshima, M., Kobayashi, M., Tsutsumi, M. & Taketo, M.M. Morphological and molecular processes of polyp formation in ApcΔ716 knockout mice. Cancer Res. 57, 1644–1649 (1997).

    CAS  PubMed  Google Scholar 

  13. Haigis, K.M., Caya, J.G., Reichelderfer, M. & Dove, W.F. Intestinal adenomas can develop with a stable karyotype and stable microsatellites. Proc. Natl. Acad. Sci. USA 99, 8927–8931 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haigis, K.M. & Dove, W.F. A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nat. Genet. 33, 33–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Rudolph, K.L., Millard, M., Bosenberg, M.W. & DePinho, R.A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28, 155–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat. Genet. 26, 424–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Gisselsson, D. et al. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl. Acad. Sci. USA 97, 5357–5362 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat. Cell Biol. 3, 433–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kaplan, K.B. et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nat. Cell Biol. 3, 429–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Homfray, T.F.R. et al. Defects in mismatch repair occur after APC mutations in the pathogenesis of sporadic colorectal tumors. Hum. Mutat. 11, 114–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Jones, S.M. & Kazlauskas, A. Growth-factor-dependent mitogenesis requires two distinct phases of signaling. Nat. Cell Biol. 3, 165–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Dufner, A. & Thomas, G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Groden, J. et al. Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Res. 55, 1531–1539 (1995).

    CAS  PubMed  Google Scholar 

  24. Tetsu, O. & McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ohtsubo, M. & Roberts, J.M. Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259, 1908–1912 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Spruck, C.H., Won, K.-A. & Reed, S.I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Potten, C.S., Wilson, J.W. & Booth, C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 15, 82–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Paulovich, A.G., Toczyski, D.P. & Hartwell, L.H. When checkpoints fail. Cell 88, 315–321 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Brunn, G.J. et al. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmanin and LY294002. EMBO J. 15, 5256–5267 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Romanelli, A., Dreisbach, V.C. & Blenis, J. Characterization of phosphatidylinositol 3-Kinase-dependent phosphorylation of the hydrophobic motif site Thr389 in p70 S6 kinase 1. J. Biol. Chem. 277, 40281–40289 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Dobles, M., Liberal, V., Scott, M.L., Benezra, R. & Sorger, P.K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, P., Jiang, W., Weghorst, C.M. & Weinstein, I.B. Overexpression of cyclin D1 enhances gene amplification. Cancer Res. 56, 36–39 (1996).

    CAS  PubMed  Google Scholar 

  33. Shih, I.-M. et al. Evidence that genetic instability occurs at an early stage of colorectal turmorigenesis. Cancer Res. 61, 818–822 (2001).

    CAS  PubMed  Google Scholar 

  34. Willenbucher, R.F. et al. Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am. J. Pathol. 154, 1825–1830 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sieber, O.M. et al. Analysis of chromosomal instability in human colorectal adenomas with two mutational hits at APC. Proc. Natl. Acad. Sci. 99, 16910–16915 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hermsen, M. et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 123, 1109–1119 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ried, T. et al. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 15, 234–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Goel, A. et al. Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res. 63, 1608–1614 (2003).

    CAS  PubMed  Google Scholar 

  39. Tischfield, J.A. & Shao, C. Somatic recombination redux. Nat. Genet. 33, 5–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Long, X. et al. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr. Biol. 12, 1448–1461 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. McManus, E.J. & Alessi, D.R. TSC1-TSC2: a complex tale of PKB-mediated S6K regulation. Nat. Cell Biol. 4, E214–E216 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C. & Blenis, J. Tuberous sclerosis complex gene products, tuberlin and hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seno, H. et al. CDX2 expression in the stomach with intestinal metaplasia and intestinal-type cancer: Prognostic implications. Int. J. Oncology 21, 769–774 (2002).

    CAS  Google Scholar 

  45. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, T.R., Dorotinsky, C.S., McGuire, L.J., Macy, M.L. & Hay, R.J. DLD-1 and HCT-15 cell lines derived separately from colorectal carcinomas have totally different chromosomal changes but the same genetic origin. Cancer Genet. Cytogenet. 81, 103–108 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Quaroni, A., Wands, J., Trelstad, R.L. & Isselbacher, K.J. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J. Cell Biol. 80, 248–265 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Ishikawa, T., Tamai, Y., Li, Q., Oshima, M. & Taketo, M.M. Requirement for tumor suppressor Apc in the morphogenesis of anterior and ventral mouse embryo. Dev. Biol. 253, 230–246 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. L. White and P. K. Vogt for valuable comments on the manuscript; F. Tamanoi for unpublished information; M. Sugai and A. Shimizu for help in flow cytometry; H. Seno and T. Ishikawa for antibody to mouse CDX2; J.-N. Freund for mouse Cdx2 cDNA; M. Tsujii for DLD-1 and IEC-6 cell lines; and M. Aoki, N. Harada, S. Yonehara, E. Nishida, T. Ishikawa and H. Miyoshi for help, suggestions and discussions. This work was supported by grants from Organization for Pharmaceutical Safety and Research and the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto M Taketo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, K., Tamai, Y., Horiike, S. et al. Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Δ716 Cdx2+/− compound mutant mice. Nat Genet 35, 323–330 (2003). https://doi.org/10.1038/ng1265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing