Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosomal instability in ulcerative colitis is related to telomere shortening

Abstract

Ulcerative colitis, a chronic inflammatory disease of the colon, is associated with a high risk of colorectal carcinoma1 that is thought to develop through genomic instability2. We considered that the rapid cell turnover and oxidative injury observed in ulcerative colitis might accelerate telomere shortening3, thereby increasing the potential of chromosomal ends to fuse4, resulting in cycles of chromatin bridge breakage and fusion5,6 and chromosomal instability associated with tumor cell progression7,8. Here we have used quantitative fluorescence in situ hybridization to compare chromosomal aberrations and telomere shortening in non-dysplastic mucosa taken from individuals affected by ulcerative colitis, either with (UC progressors) or without (UC non-progressors) dysplasia or cancer. Losses, but not gains, of chromosomal arms and centromeres are highly correlated with telomere shortening. Chromosomal losses are greater and telomeres are shorter in biopsy samples from UC progressors than in those from UC non-progressors or control individuals without ulcerative colitis. A mechanistic link between telomere shortening and chromosomal instability is supported by a higher frequency of anaphase bridges—an intermediate in the breakage and fusion of chromatin bridges9—in UC progressors than in UC non-progressors or control individuals. Our study shows that telomere length is correlated with chromosomal instability in a precursor of human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of QFISH using a PNA telomeric probe.
Figure 2: Telomere length shortening in UC progressors.
Figure 3: Chromosomal arm and centromere losses (but not gains) are related to telomere shortening.
Figure 4: Higher frequency of anaphase bridges in UC progressors.

Similar content being viewed by others

References

  1. Ekbom, A., Helmick, C., Zack, M. & Adami, H.O. Ulcerative colitis and colorectal cancer. A population based study. N. Eng. J. Med. 323, 1228–1233 (1990).

    Article  CAS  Google Scholar 

  2. Loeb, K.R. & Loeb, L.A. Genetic instability and the mutator phenotype: studies in ulcerative colitis. Am. J. Pathol. 154, 1621–1626 (1999).

    Article  CAS  Google Scholar 

  3. von Zglinicki, T. Role of oxidative stress in telomere length regulation and replicative senescence. Ann. NY Acad. Sci. 908, 99–110 (2000).

    Article  CAS  Google Scholar 

  4. Blackburn, E.H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    Article  CAS  Google Scholar 

  5. Hande, M.P., Samper, E., Lansdorp, P. & Blasco, M.A. Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J. Cell. Biol. 144, 589–601 (1999).

    Article  CAS  Google Scholar 

  6. Artandi, S.E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  Google Scholar 

  7. deLange, T. in Telomeres (eds Blackburn, E., & Greider, C.) 265–293 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1995).

    Google Scholar 

  8. Tlsty, T.D. Genetic instability and its role in neoplasia. Curr. Top. Microbiol. Immunol. 221, 37–46 (1997).

    CAS  PubMed  Google Scholar 

  9. McClintock, B. The stability of broken ends of chromosomes in Zea Mays. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Oexle, K. Telomere length distribution and Southern blot analysis. J. Theor. Biol. 190, 369–377 (1998).

    Article  CAS  Google Scholar 

  11. Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E. & Lansdorp, P.M. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 16, 743–747 (1998).

    Article  CAS  Google Scholar 

  12. Lansdorp, P.M. et al. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685–691 (1996).

    Article  CAS  Google Scholar 

  13. Gisselsson, D. et al. Abnormal nuclear shape in solid tumors reflects mitotic instability. Am. J. Pathol. 158, 199–206 (2001).

    Article  CAS  Google Scholar 

  14. Gisselsson, D. et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc. Natl Acad. Sci. USA 98, 12683–12688 (2001).

    Article  CAS  Google Scholar 

  15. Rudolph, K.L., Millard, M., Bosenberg, M.W. & DePinho, R.A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28, 155–159 (2001).

    Article  CAS  Google Scholar 

  16. Rabinovitch, P.S. et al. Pancolonic chromosomal instability precedes dysplasia and cancer in ulcerative colitis. Cancer Res. 59, 5148–5153 (1999).

    CAS  PubMed  Google Scholar 

  17. Fouladi, B., Sabatier, L., Miller, D., Pottier, G. & Murnane, J.P. The relationship between spontaneous telomere loss and chromosomal instability in a human tumor cell line. Neoplasia 2, 540–554 (2000).

    Article  CAS  Google Scholar 

  18. Hemann, M.T., Strong, M.A., Hao, L.Y. & Greider, C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  Google Scholar 

  19. Wright, W.W. & Shay, J.W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med. 6, 849–851 (2000).

    Article  CAS  Google Scholar 

  20. Martens, U.M. et al. Short telomeres on human chromosome 17p. Nat. Genet. 18, 76–80 (1998).

    Article  CAS  Google Scholar 

  21. Meyne, J. et al. Distribution of non-telomeric sites of (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99, 3–10 (1990).

    Article  CAS  Google Scholar 

  22. Day, J.P., Limoli, C.L. & Morgan, W.F. Recombination involving interstitial telomere repeat-like sequences promotes chromosomal instability in Chinese hamster cells. Carcinogenesis 19, 259–265 (1998).

    Article  CAS  Google Scholar 

  23. Kilburn A.E., Shea, M.J., Sargent, R.G. & Wilson, J.H. Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability. Mol. Cell. Biol. 21, 126–135 (2001).

    Article  CAS  Google Scholar 

  24. Brentnall, T.A. et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 2, 369–378 (1994).

    Article  Google Scholar 

  25. Taylor, W.R. & Stark, G.R. Regulation of the G2/M transition by p53. Oncogene 20, 1803–1815 (2001).

    Article  CAS  Google Scholar 

  26. Whitehead, C.M. & Salisbury, J.L. Regulation and regulatory activities of centrosomes. J. Cell. Biochem. Suppl. 3233, 192–199 (1999).

    Article  Google Scholar 

  27. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  Google Scholar 

  28. Rubin C.E. et al. DNA aneuploidy in colonic biopsies predicts future development of dysplasia in ulcerative colitis. Gastroenterology 103, 1611–1620 (1992).

    Article  CAS  Google Scholar 

  29. Riddell, R.H. et al. Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum. Pathol. 11, 931–968 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Stevens, S. Dziadon and G. Martelino for technical support. This work was supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Rabinovitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Sullivan, J., Bronner, M., Brentnall, T. et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 32, 280–284 (2002). https://doi.org/10.1038/ng989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng989

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing