Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin

Abstract

NKp46+CD3 natural killer lymphocytes isolated from blood, lymphoid organs, lung, liver and uterus can produce granule-dependent cytotoxicity and interferon-γ. Here we identify in dermis, gut lamina propria and cryptopatches distinct populations of NKp46+CD3 cells with a diminished capacity to degranulate and produce interferon-γ. In the gut, expression of the transcription factor RORγt, which is involved in the development of lymphoid tissue–inducer cells, defined a previously unknown subset of NKp46+CD3 lymphocytes. Unlike RORγt lamina propria and dermis natural killer cells, gut RORγt+NKp46+ cells produced interleukin 22. Our data show that lymphoid tissue–inducer cells and natural killer cells shared unanticipated similarities and emphasize the heterogeneity of NKp46+CD3 cells in innate immunity, lymphoid organization and local tissue repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of NKp46+CD3 cells in human and mouse gut and skin.
Figure 2: Phenotype of NKp46+CD3 cells in mouse gut and skin.
Figure 3: Effector functions of skin and gut NKp46+CD3 cells.
Figure 4: RORγt expression and analysis of NK1.1lo and NK1.1+ subsets of gut NKp46+CD3 cells.
Figure 5: Cytokine profiles of gut NKp46+CD3 cells.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kupper, T.S. & Fuhlbrigge, R.C. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 4, 211–222 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  2. Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418 (2007).

    Article  CAS  Google Scholar 

  3. Tlaskalova-Hogenova, H. et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 93, 97–108 (2004).

    Article  CAS  Google Scholar 

  4. Mowat, A.M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3, 331–341 (2003).

    Article  CAS  Google Scholar 

  5. Jameson, J. & Havran, W.L. Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol. Rev. 215, 114–122 (2007).

    Article  CAS  Google Scholar 

  6. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  Google Scholar 

  7. Hayakawa, Y., Huntington, N.D., Nutt, S.L. & Smyth, M.J. Functional subsets of mouse natural killer cells. Immunol. Rev. 214, 47–55 (2006).

    Article  CAS  Google Scholar 

  8. Gregoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    Article  CAS  Google Scholar 

  9. Eiras, P. et al. Intestinal intraepithelial lymphocytes contain a CD3CD7+ subset expressing natural killer markers and a singular pattern of adhesion molecules. Scand. J. Immunol. 52, 1–6 (2000).

    Article  CAS  Google Scholar 

  10. Cohavy, O., Zhou, J., Ware, C.F. & Targan, S.R. LIGHT is constitutively expressed on T and NK cells in the human gut and can be induced by CD2-mediated signaling. J. Immunol. 174, 646–653 (2005).

    Article  CAS  Google Scholar 

  11. McDermott, J.R., Humphreys, N.E., Forman, S.P., Donaldson, D.D. & Grencis, R.K. Intraepithelial NK cell-derived IL-13 induces intestinal pathology associated with nematode infection. J. Immunol. 175, 3207–3213 (2005).

    Article  CAS  Google Scholar 

  12. Harrington, L., Srikanth, C.V., Antony, R., Shi, H.N. & Cherayil, B.J. A role for natural killer cells in intestinal inflammation caused by infection with Salmonella enterica serovar Typhimurium. FEMS Immunol. Med. Microbiol. 76, 3045–3053 (2007).

    Google Scholar 

  13. Ebert, L.M., Meuter, S. & Moser, B. Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J. Immunol. 176, 4331–4336 (2006).

    Article  CAS  Google Scholar 

  14. Ottaviani, C. et al. CD56brightCD16 NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur. J. Immunol. 36, 118–128 (2005).

    Article  Google Scholar 

  15. Buentke, E. et al. Natural killer and dendritic cell contact in lesional atopic dermatitis skin–Malassezia-influenced cell interaction. J. Invest. Dermatol. 119, 850–857 (2002).

    Article  CAS  Google Scholar 

  16. Parolini, S. et al. The role of chemerin in the co-localization of NK and dendritic cell subsets into inflamed tissues. Blood 109, 3625–3632 (2007).

    Article  CAS  Google Scholar 

  17. Walzer, T. et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA 104, 3384–3389 (2007).

    Article  CAS  Google Scholar 

  18. Stewart, C.A. et al. Germ-line and rearranged Tcrd transcription distinguish bona fide NK cells and NK-like γδ T cells. Eur. J. Immunol. 37, 1442–1452 (2007).

    Article  CAS  Google Scholar 

  19. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 3, 523–528 (2002).

    Article  Google Scholar 

  20. Jamieson, A.M., Isnard, P., Dorfman, J.R., Coles, M.C. & Raulet, D.H. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J. Immunol. 172, 864–870 (2004).

    Article  CAS  Google Scholar 

  21. Hayakawa, Y. & Smyth, M.J. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 176, 1517–1524 (2006).

    Article  CAS  Google Scholar 

  22. Eberl, G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat. Rev. Immunol. 5, 413–420 (2005).

    Article  CAS  Google Scholar 

  23. Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3LTβ+ cells that can differentiate to APC, NK cells and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  Google Scholar 

  24. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  Google Scholar 

  25. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  26. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  27. Aujla, S.J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14, 275–281 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  28. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  Google Scholar 

  29. Ouyang, W., Kolls, J.K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  30. O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    Article  CAS  Google Scholar 

  31. Vosshenrich, C.A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7, 1217–1224 (2006).

    Article  CAS  Google Scholar 

  32. Caligiuri, M.A. Human natural killer cells. Blood 112, 461–469 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  33. Sanos, S.L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells. Nat. Immunol. advance online publication, doi:10.1038/ni1684 (23 November 2008).

  34. Meresse, B. et al. Reprogramming of CTLs into natural killer-like cells in celiac disease. J. Exp. Med. 203, 1343–1345 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  35. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  36. Boos, M.D., Yokota, Y., Eberl, G. & Kee, B.L. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  37. Cupedo, T. et al. Human fetal lymphoid tissue–inducer cells are interleukin 17–producing precursors to RORC+ CD127+ natural killer–like cells. Nat. Immunol. advance online publication, doi:10.1038/ni1668 (23 November 2008).

  38. Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  39. Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 7, 517–523 (2006).

    Article  CAS  Google Scholar 

  40. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).

    Article  CAS  Google Scholar 

  41. Nolte-'t Hoen, E. et al. Increased surveillance of cells in mitosis by human NK cells suggests a novel strategy for limiting tumor growth and viral replication. Blood 109, 670–673 (2006).

    Article  Google Scholar 

  42. Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat. Immunol. 9, 667–675 (2008).

    Article  CAS  Google Scholar 

  43. Kim, M.Y. et al. Heterogeneity of lymphoid tissue inducer cell populations present in embryonic and adult mouse lymphoid tissues. Immunology 124, 166–174 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  44. Wolk, K. & Sabat, R. Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev. 17, 367–380 (2006).

    Article  CAS  Google Scholar 

  45. Zenewicz, L.A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  46. Bangert, C., Friedl, J., Stary, G., Stingl, G. & Kopp, T. Immunopathologic features of allergic contact dermatitis in humans: participation of plasmacytoid dendritic cells in the pathogenesis of the disease? J. Invest. Dermatol. 121, 1409–1418 (2003).

    Article  CAS  Google Scholar 

  47. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  Google Scholar 

  48. Spaggiari, G.M. et al. Soluble HLA class I induces NK cell apoptosis upon the engagement of killer-activating HLA class I receptors through FasL-Fas interaction. Blood 100, 4098–4107 (2002).

    Article  CAS  Google Scholar 

  49. Chaix, J. et al. Cutting edge: Priming of NK cells by IL-18. J. Immunol. 181, 1627–1631 (2008).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the mouse functional genomics platform of Marseille-Nice Genopole for immunohistology; P. Grenot, M. Barad and A. Zouine from the Centre d'Immunologie de Marseille-Luminy flow cytometry core facility and M. Fallet from the Centre d'Immunologie de Marseille-Luminy microscopy facility for assistance; M. Betizeau for contributions to the initial phases of this work; M. Baratin, T. Walzer and S. Ugolini for discussions; and M. Ito (Central Institute for Experimental Animals) for Rag2−/−Il2rg−/− mice. Anti–human NKVSF1 was provided by A. Poggi (National Cancer Institute, Genoa, Italy), and anti-IL-22 (MH22B2) was provided by J.C. Renauld (Ludwig Institute for Cancer Research). E.V. and E.T. are joint senior authors. Supported by Ligue Nationale contre le Cancer ('Equipe labellisée La Ligue'), Agence Nationale de la Recherche, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Ministère de l'Enseignement Supérieur et de la Recherche, Fondation pour la Recherche Medicale (C.L.), Region Provence Alpes Côte d′Azur–Institut National de la Santé et de la Recherche Médicale (A.R.), the Crohn's and Colitis Foundation of America (I.I.I.) and the Institut Universitaire de France (E.V.).

Author information

Authors and Affiliations

Authors

Contributions

E.T. and E.V. designed the experiments and wrote the paper; E.T., C.L., A.R., I.I.I. and C.C. did and analyzed the experiments; Li.C. contributed to tissue section preparation and immunofluorescence staining; J.H. provided human samples; E.A., J.B. and D.C. did microarray hybridization and preliminary analysis; La.C. and M.D. contributed to microarray data analysis; and D.R.L. provided reagents crucial for the experiments and contributed to the design of the experiments and the interpretation of the data.

Corresponding authors

Correspondence to Eric Vivier or Elena Tomasello.

Ethics declarations

Competing interests

EV is a cofounder and shareholder of Innate-Pharma.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2, Supplementary Tables 1–2 and Supplementary Methods (PDF 3858 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luci, C., Reynders, A., Ivanov, I. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat Immunol 10, 75–82 (2009). https://doi.org/10.1038/ni.1681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing